
REPORT DOCUMENTATION PAGE Form Approved
R OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations end Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

24/May/2001 THESIS

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
AN OBJECT DESCRIPTION LANGUAGE FOR DISTIBUTED DISCRETE
EVENT SIMULATIONS

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
MAJ ANDREWS HAROLD G

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
TUFTS UNIVERSITY REPORT NUMBER

CI01-75

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433 11. SPONSOR/MONITORS REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

13. SUPPLEMENTARY NOTES

14. ABSTRACT

20010720 039
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF

PAGES
435 19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.1.S

An Object Description Language for Distributed
Discrete Event Simulations

by

Harold Gregory Andrews II, Major, USAF
Submitted to the Department of Electrical Engineering and Computer Science on 13 April 2001, in partial

fulfillment of the requirements for the Degree of Doctor of Philosophy of Computer Science

Abstract
Digital simulation is a useful tool for developing a better understanding of physical or hypothetical

systems. It has been used with great success since the advent of the digital computer in such varied fields

as weather prediction, planning military operations, and training. As digital computers become more

capable and network communications systems more prevalent, the notion of synergistically combining the

two to perform distributed simulation has led to some tremendous improvements in simulation speed and

fidelity.

This dissertation describes a new programming language that is useful in creating distributed discrete event

simulations without burdening simulation developers with the difficult and error-prone task of

synchronizing nodes in a distributed simulation. Developers can instead focus on specifying the behavior

of the objects in the virtual environment with little effort devoted to lower level concerns.

The language structure follows the notions of stimulus-response and completely isolates simulation object

instances from each other. Inter-object communication occurs solely through message passing. Several

example applications are described.

Thesis Advisor: Professor David W. Krumme, Associate Professor of Computer Science

Technical Supervisor: Dr. Owen L. Deutsch, Senior Member of the Technical Staff

An Object Description Language for Distributed
Discrete Event Simulations

A dissertation submitted by

Harold Gregory Andrews II, Major, USAF

MS Mathematics, University of Texas, San Antonio, 1997
MBA Management, Rensselaer Polytechnic Institute, 1992

BS Mathematics, Northeastern University, 1988
BS Computer Science, Northeastern University, 1988

Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment for the
requirements for the degree of

Doctorate of Philosophy in Computer Science

TUFTS UNIVERSITY

May 2001

© 2001 Harold Gregory Andrews II. All rights reserved

The author hereby grants to Tufts University permission to reproduce and to distribute publicly paper and
electronic copies of this dissertation document in whole or in part.

Thesis Advisor Associate Professor David W. Krume
Draper Technical Supervison Dr. Owen L. Deutsch

Thesis Committee Member. Associate Professor Anseim Bhumer
Thesis Conmittee Member. Associate Professor Robert J. K. Jacob

ii

ACKNOWLEDGEME NT
13 April 2001

I first and foremost acknowledge the intervention from the Almighty God who, through His divine

providence, saw fit to allow me to attend school and work on this project.

Next, I thank my wife and best friend Barbara whose love, devotion, and willingness to deal with much in

terms of caring for our children, what seems to have been more sickness than health, and my vacant stares

while I pondered some troubling technical triviality, freed me from having to fret over managing many of

our household affairs; they have indeed been in good hands.

Special thanks go also to my Tufts University thesis advisor, Professor David Krumme, and my Draper

Laboratory technical supervisor, Dr. Owen Deutsch for their help, guidance, and insight as I worked on this

dissertation and the related project. In addition, thanks to my thesis committee members Professors

Anselm Blumer and Robert Jacob for their willingness to wade through the musings contained herein, and

quiz me about them. I would also like to thank Professor Karen Panetta for her participation as an

examiner during my orals, and for the observations, comments and insights she offered; they were very

helpful.

Additional thanks go to current and former personnel at the Air Force Institute of Technology, office of

Civilian Institution Programs: Colonel Paul Copp, for fighting for me to go to school, when the Air Staff

was opposed to the idea; Majors Ralph Tolle and David Schluckebier for acting as my voice at AFIT;

Captain Rick Sutter, who suggested a novel way of dealing with administrative difficulties. Also, thanks

go to the faculty of the computer science department at the United States Air Force Academy who were

willing to take a chance on an unknown.

In no particular order I also acknowledge, and humbly thank the following for their prayers, advice,

support, and words of encouragement: my mother, Jill Andrews, for her help beyond the call of duty

during the aforementioned periods of sickness; my father, Harold Andrews, for providing me with an

environment in which I was free to explore my various interests; my mother-in-law, Veronica Vogt, for her

help, prayers, encouragement and mastery of the English language; my father-in-law, Kenneth Vogt who

iii11

helped me to keep my sense of humor; my former high school math teacher, Eugene Kaczowka, who in

many ways started this ball rolling lo those many years ago; Major William Szarek, whose dedication to the

notion of service above self provided me with as a model to emulate; Majors Michael Ward and Barrie

Wheeler, for helping me to see how things really are; Lieutenant Colonel Skip Youngberg for giving me a

well deserved and much needed kick in the pants; Colonel Larry Carr and Lieutenant Colonel Richard Saint

Pierre, who provided me with counsel, wisdom, and the perspective of their experience; Robert Balusek,

Dr. John Romo, and Dr. Stephen Welstead, for their advice in matters of higher education; and to those

unmentioned by name here who through their prayers have allowed this work to come to a merciful

conclusion.

This thesis was prepared at the Charles Stark Draper Laboratory, Inc., under projects 13025 (Multi-Agent

Collaboration Services), 15052 (SOS Large Scale Analysis Capability), 18527 (C41 Laboratory Capability

Development), and 13360 (Tactical Node).

Publication of this thesis does not constitute approval by Draper or the sponsoring agency of the findings or

conclusions contained herein. It is published for the exchange and stimulation of ideas.

Harold Gregory Andrews II, Major, USAF

iv

Contents
CHAPTER 1. RATIONALE AND BACKGROUND ... 1

1.1. O VERVIEW .. 1
1.2. A LTERNATIVE APPROACHES ... 4

1.2.1. Full implem entations .. 4
1.2.2. M odular sim ulation system s ... 6
1.2.3. 41h generation simulation programming languages 7
1.2.4. D istributed sim ulation standards ... 9

1.3. SO D L SYSTEM DESCRIPTION ... 9
1.4. SCOPE .. 12

CHAPTER 2. DIGITAL SIMULATION .. 13

2.1. O VERVIEW ... 13
2.2. M ODELING ... 14
2.3. D IGITAL SIM ULATION .. 18

2.3.1. Continuous tim e sim ulation .. 21
2.3.2. D iscrete event sim ulation ... 21
2.3.3. Distributed discrete event simulation (DDES) ... 23

CHAPTER 3. OVERVIEW OF OPTIMISTIC SYNCHRONIZATION 27

3.1. O VERVIEW ... 27
3.2. STATE SAVING ... 30
3.3. FOSSIL COLLECTION .. 31
3.4. R OLLBACK (STATE RECOVERY) ... 33
3.5. G LOBAL V IRTUAL TIM E COM PUTATION .. 34

CHAPTER 4. SODL RUN-TIME SYSTEM ARCHITECTURE 41

4.1. O VERVIEW ... 41
4.2. M ESSAGE CONSTRUCTS .. 42

4.2.1. M essage Type Specifier ... 42
4.2.2. M essage destination list ... 42
4.2.3. M essage tim e stamp .. 43
4.2.4. M essage transm ission fl ag ... 43
4.2.5. M essage identifi er .. 43
4.2.6. M essage data payload ... 43
4.2.7. M essage m ethods ... 44

4.3. PROCESS CONSTRUCTS .. 44
4.3.1. Process tim e stamp .. 45
4.3.2. Process identifi er ... 45
4.3.3. Process state data .. 45
4.3.4. Process m ethods .. 46
4.3.5. Process m odes .. 46
4.3.6. Process nodes ... 46
4.3.7. Process inheritance .. 47
4.3.8. Fossil collection in the process instance .. 47

V

4.4. PROCESS CONTROLLERS ... 47
4.4. 1. Identifier ... 48
4.4.2. State queue ... 48
4.4.3. Process controller message receiver .. 48
4.4.4. Process controller message transmitter... 49
4.4.5. Rollback .. 49
4.4.6. Fossil collection ... 49

4.5. ENGINES.. 50
4.5. 1. Local clock ... 52
4.5.2. Pending message queue (event queue) .. 52
4.5.3. Antimessage queue.. 52
4.5.4. Processed message queue... 52
4.5.5. Output message queue .. 52
4.5.6. Process controller array .. 53
4.5.7. Fossil collection schedule... 53
4.5.8. Engine message receiver ... 53
4.5.9. Engine message transmitter.. 54
4.5.10. Engine advancement... 54
4.5. 11. Rollback... 54
4.5.12. Fossil collection.. 55

4.6. ENGINE STAND .. 55
4.6. 1. Idle listener interface.. 56
4.6.2. Engine List ... 56
4.6.3. Message forwarder.. 56
4.6.4. Local virtual time (LVT) calculator ... 57
4.6.5. Global virtual time (GVT) estimator .. 57
4.6.6. Fossil collection ... 57

4.7. MESSAGE PASSING INTERFACE (MPI) .. 58
4.8. VIEW MANAGER ... 58

4.8. 1. Text view manager... 58
4.8.2. GLUT view manager.. 59

CHAPTER 5. SODL PARSER USAGE .. 61

5. 1. OVERviEW...61

5. 1.1. Cautionary notes .. 61
5.2. INSTALLATION.. 61
5.3. DIRECTORY STRUCTURE ... 62

5.3. 1. /bin .. 62
5.3.2. ./config.. 62
5.3.3. ./doc ... 63
5.3.4. ./object.. 63
5.3.5. ./sample... 63
5.3.6. ./src .. 67
5.3.7. ./template... 67

5.4. COMMAND LINE OPTIONS.. 67
5.5. CONFIGURATION FILES... 68

Vi

CHAPTER 6. SODL LANGUAGE STRUCTURE 71

6. 1. OVERVIEW ... 71
6.2. APPROACH ... 71
6.3. CONSTRUCTS ... 72

6.3.1. Message constructs.. 73
6.3.2. Process constructs... 73

6.4. IMPORT DECLARATIONS .. 74
6.4. 1. Importing SODL constructs... 74
6.4.2. Importing non-SODL files .. 75

6.5. MEMBER VARIABLE DECLARATIONS... 76
6.5. 1. Basic data types.. 76
6.5.2. Extended data types ... 77
6.5.3. Process constructs as data members .. 78
6.5.4. A note on references and pointers ... 80

6.6. METHOD DECLARATIONS .. 81
6.7. MESSAGES .. 82

6.7. 1. System-defined message member variables 83
6.7.2. System-defined message methods .. 84
6.7.3. System-defined messages ... 85
6.7.4. Message Handles .. 86

6.8. PROCESSES .. 86
6.8. 1. System-d efined process member variables.. 87
6.8.2. System-defined process methods... 87
6.8.3. Process Handles... 88
6.8.4. Special Processes ... 89

6.9. MODE AND NODE DECLARATIONS.. 89
6.9. 1. Modes .. 89
6.9.2. Nodes .. 90

CHAPTER 7. C++ CODE GENERATION.. 97

7. 1. MESSAGE CONSTRUCT FILES... 97
7. 1.1. A simple message construct .. 98
7.1.2. Message construct with user-defined methods and data members 99

7.2. PROCESS CONSTRUCT FILES .. 101
7.2. 1. A simple process construct ... 101
7.2.2. Process constructs with data members and methods 102
7.2.3. Mode and node declarations.. 104

CHAPTER 8. GLUT-BASED USER INTERFACE....................................il

8. 1. OUTPUT CONCERNS IN AN OPTIMISTIC SIMULATOR 111
8.2. OVERVIEW OF THE SODL/GVM SUBSYSTEM ... 111

8.2. 1. SODL/GVM scene graphs... 113
8.3. SODL/GVM USAGE .. 116
8.4. SODL/GVM ARCHITECTURE.. 118

8.4. 1. SODL view controllers, the process: View 119
8.4.2. Messaging on the GVM side.. 121

Vii

CHAPTER 9. SODL SAMPLE PROGRAMS... 123

9. 1. SINGLE NODE TEXTUAL SIMULATIONS... 123
9. 1.1. Simple].. 123
9.1.2. Simple2.. 125
9.1.3. Simple3.. 125
9.1 .4. Ping.. 127
9.1 .5. Ring] .. 128
9.1.6. Ring2 ... 131
9.1.7. Brigade2 .. 132

9.2. MULTIPLE NODE TEXTUAL SIMULATIONS...135
9.2. 1.Relayl... 135
9.2 .2. Relay2... 136
9.2 .3. Relay3... 138
9.2.4. Relay4... 139
9.2 .5. RelayS .. 141
9.2.6 Relay6... 143

9.3. GLUT BASED DEMONSTRATIONS ... 145
9.3. 1. Bounce]... 146
9.3.2. Bounce2... 148
9.3.3. Brigade] .. 151
9.3.4. Hierarchy ... 152
9.3.5. Battle ... 153

CHAPTER 10. CONCLUSIONS... 165

10. 1. CONTRIBUTIONS OF THIS WORK.. 165
10. 1. 1. SODL system *"********"****''**'**"165
10.1.2. Simulation Formalism ... 165
10. 1.3. Asynchronous Global Virtual Time Algorithm................................. 166

10.2. POTENTIAL FUTURE WORK.. 166
10.2. 1. Distributed SODL run-time system ... 166
10.2.2. Graphics Subsystem .. 167
10.2.3. User Interface... 167
10. 2.4. Process Migration and Load Balancing.. 167
10.2.5. Analysis tools ... 168
10.2.6. Multiple inheritance.. 168

APPENDIX A. SODL LANGUAGE PARSER SPECIFICATION 169

APPENDIX B. 50Db RUN TIME ENGINE CLASS REFERENCE 173

B.1. OVERVIEW.. 173
B.2. SODL RUN-TIME SYSTEM C++ CLASSES ... 173

B.2.1. ::Exception ... 173
B.2.2. ::Exception::BadCast ... 173
B.2.3. ::Exception.:CausalityError.. 174
B.2.4. ::Exception::Nonspecific ... 175
B.2.5. ::Exception::RangeError ... 176

viii

B.2.6 sodl..AntiMessage ... 177
B.2. 7. sodl.::Clock ... 177
B.2.8. sodl.:Defs... 179
B.2.9. sodl..Earlier.. 181
B.2.10. sodl:.EndSimulation.. 181
B.2.11. sodl:.Engine .. 182
B.2.12. sodl::EngineStand.. 186
B.2.13. sodl::GLUT ViewManager .. 190
B.2.14. sodl::Handle .. 194
B.2. 15. sodl::IdleListener .. 195
B.2.16. sodl::Later .. 195
B.2.17. sodl::Message .. 196
B.2.18. sodl::MessageHandle .. 200
B.2.19. sodl::Process ... 200
B.2.20. sodi: :ProcessCont roller ... 203
B.2.21. sodl: :ProcessHandle... 205
B.2.22. sodl: :ProcessMode... 206
B.2.23. sodl::ProfileTools.. 207
B.2.24. sodl::Random... 207
B.2.25. sodl.::ScheduleItem... 208
B.2.26 sodl::StartSimulation .. 209
B.2.27. sodl::SystemMessage .. 210
B.2.28. sodl::Text ViewManager ... 210
B.2.29. sodl::TimeStamp ... 211
B.2.30. sodl::Trace.. 212
B.2.31. sodl:: UpdateGVT .. 214
B.2.32. sodl:: ViewManager .. 215
B.2.33. SODL run-time system items not associated with a specific class.......... 215

B.3. SODL - GLUT INTERFACE .. 221
B. 3.1. message.AddNode ... 222
B.3.2. message:-AddNode2D.. 222
B.3.3. message:AddNode3D.. 222
B.3.4. message:AddShape .. 223
B.3.5. message:AddShape2D... 223
B.3.6 message:AddShape3D... 224
B.3. 7. message:-AddSubordinate ... 224
B.3.8. message.:Add Vertex.. 225
B.3.9. message:AddVertex2D .. 225
B.3. 10. message:AddVertex3D... 225
B.3.11. message:Add View.. 226
B. 3.12. message:RefreshDisplay... 226
B.3.13. message:Register... 227
B.3.14. message:RegisterNode... 227
B.3. 15. message:RegisterNode2D ... 227
B. 3.16. message:RegisterNode3D ... 228
B. 3.17. message:RegisterShape.. 228

ix

B. 3.18. message.RegisterShape2D .. 228
B.3. 19. message.RegisterShape3D .. 229
B.3.20. message:RegisterVertex ... 229
B. 3.21. message:RegisterVertex2D.. 229
B. 3.22. message:RegisterVertex3D.. 230
B.3.23. message:SelectiveActivate... 230
B.3.24. message:SetActive.. 231
B.3.25. message:SetAffine.. 232
B.3.26. message:SetAffine2D .. 232
B.3.27. message:SetAffine3D .. 234
B.3.28. message:SetColor .. 235
B.3.29. message:SetConeSize .. 236
B.3.30. message:SetCubeSize .. 237
B.3.31. message:SetCylinderSize .. 237
B.3.32. message:SetDefaultActive... 238
B.3.33. message:SetLabel .. 239
B.3.34. message:SetMode .. 239
B.3.35. message:SetPointSize .. 240
B.3. 36. message:SetPosition ... 241
B.3.37. message:SetRefresh .. 241
B.3.38. message:SetRotation2D ... 242
B.3.39. message:SetRotation3D ... 242
B.3.40. message:SetRotationCenter2D ... 242
B.3.41. message:SetRotationCenter3D ... 243
B. 3.42. message:SetScale2D... 243
B.3.43. message:SetScale3D... 243
B.3.44. message:SetScale Center2D ... 244
B.3.45. message:SetScaleCenter3D ... 244
B.3.46. message:SetSize.. 244
B.3.47. message:SetSphe reSize.. 245
B.3.48. message:SetTorusSize ... 245
B.3.49. message:SetTranslation2D.. 246
B.3.50. message:SetTranslation3D.. 246
B.3.51. message:Set Value .. 247
B.3.52. message:SetVector... 247
B.3.53. message:SetVector2D ... 248
B.3.54. message:SetVector3D ... 249
B. 3.55. message:SetVertex2D.. 249
B.3.56. message:SetVertex3D.. 250
B.3.57. process:Cone ... 250
B. 3.58. process: Cube ... 251
B.3.59. process: Cylinder ... 252
B. 3.60. process:Dodecahedron.. 253
B.3.61. process:Icosahedron... 253
B.3.62. process:Node ... 253
B.3.63. process:Node2D.. 254

x

B.3.64. process.Wode3D.. 256
B.3.65. process. Object ... 258
B.3.66. process: Octahedron.. 259
B.3. 67. process:Polygon2D .. 260
B. 3.68. process.Polygon3D .. 260
B.3.69. process:Shape .. 261
B.3. 70. process.Shape2D... 263
B.3. 71. process:Shape3D... 263
B.3. 72. process. Sphere ... 263
B.3. 73. process: Tetrahedron... 264
B.3. 74. process:Torus... 264
B.3. 75. process:Vertex.. 265
B.3.76. process: Vertex2D .. 265
B.3.77. process: Vertex3D .. 266
B. 3.78. process: View.. 267
B.3.79. process: View2D.. 269
B.3.80. process: View3D.. 272

BA4 GLUT VIEW MANAGER (GyM) CLASSES.. 275
B.4.1I. gvm::AddNode... 275
B.4.2. gvm::AddShape .. 276
B.4.3. gvm::AddVertex.. 276
B.4.4. gvm::Cone.. 277
B.4.5. gym:: CreateObject .. 278
B.4.6. gvm::Cube.. 279
B.4. 7. gvm::Cylinder.. 280
B.4.8. gvm::Dodecahedron... 281
B.4.9. gvm::Icosahedron ... 282
B.4.10. gvm::Message .. 282
B.4.11. gvm::Node .. 284
B.4. 12. gvm::Node2D... 287
B.4. 13. gvm.::Node3D... 288
B.4.14. gvm::Object... 289
B.4.15. gym:: Octahedron... 294
B.4. 16. gvm::Polygon2D ... 295
B.4. 17. gvm::Polygon3D ... 296
B.4. 18. gvm::Refresh.. 296
B.4.19. gvm::SetActive.. 297
B.4.20. gvm::SetColor .. 297
B.4.21. gvm::SetConeSize .. 298
B.4.22. gvm::SetCubeSize .. 299
B.4.23. gvm::SetCylinderSize .. 300
B.4.24. gvm::SetLabel .. 301
B.4.25. gvm::SetMode .. 301
B.4.26 gvm::SetPointSize.. 302
B.4.27. gvm::SetPosition ... 303
B.4.28. gvm::SetRotation ... 303

xi

B.4.29. gvm::SetRotation Center ... 304
B.4.30. gvm.::SetScale... 305
B.4.31. gvm..SetScale Center... 305
B.4.32. gvm::SetSize .. 306
B.4. 33. gvm. :SetSphe reSize .. 307
B.4.34. gvm..SetTorusSize.. 308
B.4.35. gvm::SetTranslation ... 309
B.4.36. gvm::Set Vertex ... 309
B.4.37. gvm::Shape.. 310
B.4.38. gvm::Shape2D.. 312
B.4.39. gvm::Shape3D.. 312
B.4.40. gvm::Sphere .. 313
B.4.41. gym::. Tetrahedron.. 314
B.4.42. gvm::Torus.. 315
B.4.43. gym:: Vertex... 316
B.4.44. gym:: Vertex2D ... 317
B.4.45. gvm::Vertex3D ... 317
B.4.46. gym:: View .. 318
B.4.47. gym:: View2D... 325
B.4.48. gvm::~View3D... 326
B.4.49. GVM Definitions not associated with a specific class 328

APPENDIX C. SAMPLE CODE LISTINGS .. 331

C. 1.BATTLE .. 331
C.1.1. Add Environment. msg... 331
C.1.2. AddTrack.msg.. 331
C.1.3. AdjustFormation.msg ... 331
C.1.4. Attack.msg.. 332
C.1.5. Battle.proc.. 332
C.1.6. Battle View.proc.. 332
C.1.7. BlueCompany.proc .. 333
C.1.8. ChangeTrack.msg ... 334
C.1.9. CommandPost.proc.. 334
C.1.10. Company.proc.. 335
C. 1.11. Destroyed. msg.. 337
C.1.12. Environmnent.proc... 337
C.1.13. Explosion. msg .. 342
C.1.14. Fire.msg... 342
C.1.15. FonnationMove.msg... 342
C.1.16. Ground.proc .. 342
C. 1.17. Hit. msg.. 343
C.1.18. HoldPosition.msg .. 343
C.1.19. Impact. msg.. 343
C.1.20. LoseTrack.msg ... 343
C.1.21. MoveFormation.msg... 343
C.1.22. MoveTo.msg .. 343
C.1.23. MovementComplete.msg .. 344

xii

C.1.24. Munition.proc .. 344
C.1.25. NewtonianMotion.proc .. 345
C.1.26 Platoon.proc.. 346
C.1.27. RedCompany.proc.. 350
C1.28. RegisterEnvironmentObject. msg ... 351
C.1.29. ScheduleAddTrack.msg.. 351
C1.30. ScheduleLoseTrack.msg ... 352
C1.31. ScheduleTrackEvent.msg.. 352
C.1.32. SensorTrack.proc .. 352
C1.33. SetAngularAcceleration.msg .. 353
C1.34. SetAngularPosition.msg ... 353
C1.35. SetAngularVelocity.msg ... 354
C.1.36. SetEnvironment.msg ... 354
C.1.37. SetFormation.msg.. 354
C. 1.38. SetLinearAcceleration.msg.. 354
C. 1.39. SetLinearPosition.msg... 354
C. 1.40. SetLinearVelocity.msg... 354
C.1.41. SetMotion.msg.. 354
C. 1.42. SetNewton janMotion. msg ... 354
C.1.43. Set TankState.msg .. 355
C.1.44. Stop. msg... 355
C.1.45. StopAzimuthSlew.msg ... 355
C1.46. StopElevationSlew.msg.. 355
C.1.47. StopSlew.msg... 355
C 1.48. Tank.proc ... 355
C.1.49. TrackEvent.msg... 360
C. 1.50. TrackMotionEvent. msg.. 360
C.1.51. UnitSetup.msg .. 360
C.1.52. Vehicle.proc .. 361
C.1.53. gvm/lgvmAddTrack.h... 364
C.1.54. gvm/lgvmAddTrack.cxx... 364
C.1.55. gvm/lgvmBattle View.h .. 364
C.1.56. gvm/gvmBattle View. cxx ... 365
C. 1.57. gvm/lgvmChange Track. h... 368
C1.58. gvm/lgvmChange Track. cxx .. 368
C.1.59. gvm/lgvmCommandPost.h ... 369
C.1.60. gvm/gvmCommandPost.cxx... 369
C.1.61. gvm/lgvmDeleteTrack.h .. 370
C1.62. gvm/lgvmDelete Track. cxx.. 370
C.1.63. gvm/lgvmExplosion.h... 371
C.1.64. gvm/lgvmExplosion.cxx... 371
C.1.65. gvm/gvmGrid.h... 372
C.1.66. gvm/lgvmGrid.cxx .. 372
C.1.67. gvm/lgvmGround.h.. 373
C.1.68. gvm/lgvmGround.cxx... 373
C.1.69. gvmlgvmMunition.h.. 374

xiii

C.1.70. gvm/gvmMunition.cxx ... 374
C1. 71. gvm/lgvmNewtonianMotion.h ... 376
C1.72. gvm/gvmNewtonianMotion. cxx ... 376
C1.73. gvm/gvmSetNewtonianMotion.h .. 377
C. 1.74. gvm/lgvmSetNewtonianMotion. cxx.. 377
C1.75. gvm/gvmSetTankState.h ... 378
C1.76. gvm/lgvmSetTankState. cxx... 378
C. 1.77. gym/gym TacticalGrid. h... 379
C. 1.78. gym/gym TacticalGrid. cxx ... 379
C.1.79. gvm/lgvmTacticalView.h ... 380
C. 1.80. gvm/lgvmTactical View. cxx... 380
C.1.81. gvm/lgvmTank.h... 382
C.1.82. gvm/lgvmTank.cxx .. 383
C.1.83. gvm/gvmTrack.h.. 384
C.1.84. gvm/gvmTrack.cxx ... 385
C.1.85. spt/sptAngularMotion.h ... 386
C. 1.86 spt/sptAngularMotion.cxx ... 387
C. 1. 87. sp t/sp tDefs.h .. 390
C. 1.88. spt/spt/Defs. cxx... 390
C. 1.89. spt/sptEnvironmentObject.h h.. 391
C. 1.90. spt/sptEnvironmentObject. cxx .. 391
C. 1.91. spt/sptLinearMotion.h ... 392
C. 1.92. spt/sptLinearMotion. cxx... 392
C. 1.93. spt/sptNewtonianMotion. h.. 395
C. 1.94. spt/sptNewtonianMotion. cxx .. 395

C.2. BouNCEl .. 397
C.2.1I. bounce.proc .. 397
C.2.2. grji-pdate.msg ... 397
C.2.3. hit.msg .. 397
C.2.4. particle.proc.. 398
C.2.5. setLsystem.msg... 399
C.2.6. start.msg.. 399

C.3. BOUNCE2.. 399
C.3.1I. bounce.proc .. 399
C.3.2. bounce-view.proc ... 400
C.3.3. hit.msg .. 400
C3.4. particle.proc.. 400
C.3.5. set-motion.msg .. 402
C.3.6 gvm/lgvmBounceView.h ... 402
C3. 7. gvm/lgvmBounce View. cxx ... 403
C.3.8. gvm/LgvmParticle.h .. 403
C.3.9. gvm/lgvmParticle.cxx .. 404
C.3.10. gvm/lgvmSetMotion.h... 404
C.3.11. gvm/lgvmSetMotion.cxx.. 405

CA4. BRwIADE1.. 405
CAL.1 battalion.proc .. 405

xiv

C.4.2. brigade.proc.. 406
C.4.3. company.proc .. 407
C.4.4. order.msg... 407
C.4.5. platoon.proc.. 407
C.4.6. report.msg.. 407
C.4. 7. set-parent.msg... 408
C.4.8. soldier.proc .. 408
C.4.9. squad.proc.. 408
C.4.10. unit.proc... 409

C.5. BRIGADE2 ... 411
C5.]I. battalion.proc .. 411
C.5.2. brigade.proc.. 411
C5S.3. company.proc .. 411

C.5.4. order.msg... 412
C.5.5. platoon.proc.. 412
C.5.6. report.msg.. 412
C.5. 7. set-parent.msg... 412
C.5.8. soldier.proc .. 412
C.5.9. squad.proc.. 413
C.5.10. unit.proc .. 413

CA6 HIERARCHY ... 415

C.6.1. generic.msg .. 415
C.6.2. hierarchy.proc ... 415

C.7. PING .. 417
C.7.1. Generic.msg.. 417
C* 7.2. Pin g.proc ... 417
* 7.3. Pong.proc .. 417

C.8. RELAY1... 418
C.8.1. generic.msg418
C.8.2. reflector.proc .. 418
C.8.3. relay.proc... 418

C.9. RELAY2..419

C.9.1. generic.msg .. 419
C.9.2. reflectorproc419
C.9.3. relay.proc... 419
C.9.4. SetPartner.msg... 419

C.10. RELAY3...420

CI.].. child.proc ... 420
C.10.2. generic.msg... 420
C.10.3. relay.proc ... 420
C.10.4 setup.msg.. 421

C. 11.RELAY4 ... 421

C I1L 1. child.proc ... 421
C.11.2. generic.msg... 422
C.11.3 relay.proc ... 422
C.11.4 setup.msg.. 422

xv

C.11.5. subscribe.msg... 422
C11.6. subscription.p roe .. 422
C.11.7. unsubscribe.msg.. 423

C. 12. RELAY ... 423
C.12.JL base.proc.. 423
C.12.2. generic.msg... 423
C.12.3. relay.proc ... 423
C.12.4. sink.proc .. 423
C.12.5. source.proc... 424

C. 13. RLAY6.. 424
C.13.1. base.proc.. 424
C13.2. generic.msg... 424
C.13.3. relay.p roe ... 424
C.13.4. sink.proc .. 425

C. 14.RING1I.. 425
C.14.1. Generic.msg .. 425
C.]4.2. Reportlndex.msg ... 425
C 14.3. ReportSize. msg ... 425
C.14.4. Report Value.msg ... 425
C.14.5. Ring.p roe ... 426
C 14.6 RingMember.proc.. 426
C. 14.7. Setup. msg ... 426
C.14.8. Subscribe.msg .. 427
C.14.9. Subscription.p roe .. 427

C. 15. RING2.. 427
C.15.1. Generie.msg .. 427
C.15.2. Reportlndex.msg ... 427
C.15.3. ReportSize.msg ... 427
C.15.4. Report Value.msg ... 427
C.15.5. Ring.proe ... 427
C.15.6. RingMember.proc.. 428
C J5.7. Setup. msg ... 428
C.15.8. Subscribe. msg .. 429
C.15.9. Subscription.proc .. 429

C.16. SimPLE1.. 429
C16.1. Generic. msg .. 429
C1]6.2. Simple.proc... 429

C. 17. SimPLE2.. 430
C.17.1. Generie.msg .. 430
C.17.2. Simple.proe .. 430

C.18. SimPLE3.. 430
C. 8.1 Child.proc .. 430
C.18.2. Generic.msg .. 431
C.18.3. SetParent.msg .. 431
C.18.4. Simple.proc... 431

APPENDIX D. REFERENCES .. 433

xvi

Tables
Table 1-1 Alternative Simulation Approaches ... 4
Table 1-2 Some simulation systems used for analysis or training purposes 5
Table 1-3 Current popular games using simulation technologies 6
Table 1-4 Examples of modular simulation systems ... 7
Table 1-5 Some commercially available 4th generation sequential simulation packages ... 8
Table 2-1 Distributed Discrete Event Simulation approaches 24
Table 3-1 Data structures needed for implementing the Time Warp algorithm 28
Table 3-2 Routines used in the asynchronous GVTE computation 37
Table 3-3 Data Structures used in the asynchronous GVTE computation 37
Table 5-1 Methods for making the SODL parser .. 61
Table 5-2 Makefile commands .. 62
Table 5-3 Sample simulation system directory structure .. 63
Table 5-4 Make command line arguments for building demonstrations 63
Table 5-5 Command line options for sp .. 67
Table 5-6 Configuration file specification in the sp command line 68
Table 5-7 Configuration file key/value descriptions .. 69
Table 6-1 SODL Basic construct types .. 72
Table 6-2 SODL construct member variable basic types ... 76
Table 6-3 Sample SODL member variable declarations ... 77
Table 6-4 Sample extended data type declaration .. 78
Table 6-5 Process construct declarations ... 79
Table 6-6 Engine specification for process declaration ... 80
Table 6-7 System-defined message member variables ... 84
Table 6-8 Common system-defined message methods ... 85
Table 6-9 System-defined messages .. 85
Table 6-10 System-defined process member variables ... 87
Table 6-11 System-defined methods for process classes .. 88
Table 6-12 sodl::ProcessHandle type routines .. 88
Table 6-13 Mode system-define methods ... 90
Table 9-1 Performance comparison of Bounce demos ... 149

Figures
Figure 3-1 Synopsis of the Time Warp algorithm .. 29
Figure 3-2 Saved state data of sample logical process at time 20 30
Figure 3-3 Result of fossil collection with GVT=7.5 ... 32
Figure 3-4 Results of a state rollback on LPj to time 6.0 .. 33
Figure 3-5 Possible unrecoverable causality errors in asynchronous token passing GVTE

calculation ... 36
Figure 3-6 Asynchronous GVTE algorithm ... 38
Figure 4-1 SODL system hierarchy .. 41
Figure 4-2 SODL message construct .. 42
Figure 4-3 SODL process construct .. 44
Figure 4-4 Process Controller message flow ... 48

xvii

Figure 4-5 Fossil collection cycle in a SODL process controller 50
Figure 4-6 SODL engine structure ... 51
Figure 4-7 Engine stand structure ... 55
Figure 5-1 SODL Parser (sp) installation instructions ... 62
Figure 5-2 User project default directory structure .. 68
Figure 6-1 Depiction of the stimulus/response notion of a SODL process 71
Figure 6-2 SODL project build steps .. 72
Figure 6-3 Basic construct form ... 72
Figure 6-4 Sample message constructs ... 73
Figure 6-5 Sample process constructs .. 73
Figure 6-6 Import directive specification ... 74
Figure 6-7 Sample import directives for message and process constructs 74
Figure 6-8 Sample non-SODL construct imports ... 75
Figure 6-9 SODL construct member variable declaration .. 76
Figure 6-10 Sample member variable declarations in SODL constructs 77
Figure 6-11 Process member variable declaration .. 78
Figure 6-12 Forms for specifying controller simulation engine 79
Figure 6-13 General m ethod form ... 81
Figure 6-14 Sam ple m ethods .. 82
Figure 6-15 Message construct form ... 82
Figure 6-16 Message flow from sending process to receiving processes 83
Figure 6-17 Process declaration syntax .. 86
Figure 6-18 Mode declaration syntax ... 90
Figure 6-19 Node declaration syntax ... 90
Figure 6-20 Output message form ... 91
Figure 6-21 Stand along input message usage .. 91
Figure 6-22 Explicit specification of destination & timestamp in body 92
Figure 6-23 Message count specification for output message arrays 93
Figure 6-24 Adding default destinations to output messages 94
Figure 6-25 Default time stamp specification ... 95
Figure 6-26 Combined default destination and time stamp specification 96
Figure 7-1 A simple message construct in Generic.msg ... 98
Figure 7-2 Relevant output derived from Generic.msg ... 98
Figure 7-3 AddSubordinate.msg with one data member and three methods 100
Figure 7-4 C++ Files resulting from AddSubordinate.msg ... 100
Figure 7-5 An initialized array as a data member in a message construct 100
Figure 7-6 Initialization of the array specification in Figure 7-5 101
Figure 7-7 A simple process construct, Shape2D.proc ... 101
Figure 7-8 Relevant output from Shape2D.proc ... 102
Figure 7-9 Simple.proc declaration of a subordinate process instance to process:Simple

..103
Figure 7-10 C++ declaration and allocation of a subordinate process 103
Figure 7-11 bounce.proc declaration of subordinate processes on non-default engines 103
Figure 7-12 Declaration and allocation of an array of subordinate processes 104
Figure 7-13 Simple.proc sample mode & subordinate nodes .. 105
Figure 7-14 Simple.h C++ relevant components of header file for Simple.proc 105

xviii

Figure 7-15 Simple.cxx, message handling implementation 106
Figure 7-16 hierarchy.proc with an output array of messages 108
Figure 7-17 Relevant portions of hierarchy.cxx implementing message arrays 108
Figure 8-1 Depiction of relationship between SODL processes and GVM objects 111
Figure 8-2 Message propagation for scene update requests .. 112
Figure 8-3 Sample scene graph; Affine transformations are A,, polygons are Py 114
Figure 8-4 Portions of SODL scene graph displayed on multiple views 115
Figure 8-5 dode.proc, a simple view with a single affine transformation node and shape

..117
Figure 8-6 O utput of dode.proc ... 118
Figure 8-7 SO D L side m essaging ... 120
Figure 8-8 Scheduling, revoking and processing messages in the GVM message queue

.121
Figure 9-1 Schem atic of Sim plel .. 123
Figure 9-2 The Sim plel Sim ulation .. 124
Figure 9-3 Process construct for the Simple2 simulator ... 125
Figure 9-4 M essage transport in Sim ple3 ... 126
Figure 9-5 Simple3 process construct declarations ... 126
Figure 9-6 Source code for the Ping demo .. 127
Figure 9-7 Ping m essage transport .. 128
Figure 9-8 Ringl Token ring using a subscription service ... 128
Figure 9-9 Ring.proc; The parent process for the Ring 1 simulation sample 129
Figure 9-10 Processes controlling (a) the subscription service and (b) individual ring

m em b ers ... 130
Figure 9-11 Message routing for Ring2 simulation .. 131
Figure 9-12 Ring.proc; The parent process for the Ring l simulation sample 132
Figure 9-13 Process ownership in Brigade2 demonstration .. 133
Figure 9-14 Communication between parent and subordinate units in Brigade2 demo. 133
Figure 9-15 Unit.proc; Basic unit construct in the Brigade2 demonstration 134
Figure 9-16 soldier.proc; Declaration of the process:soldier construct in the Brigade2

dem o ... 135
Figure 9-17 Message routing in the Relayl demo .. 135
Figure 9-18 Source code for Relay 1 process constructs ... 136
Figure 9-19 Relay2 demo message routing diagram ... 137
Figure 9-20 Relevant code for the process:relay and process:reflector constructs 137
Figure 9-21 Relevant code for the Relay3 sample .. 138
Figure 9-22 Relay4 support process constructs .. 140
Figure 9-23 process:child construct declaration for Relay4 sample 141
Figure 9-24 process:base construct in the Relay5 sample ... 142
Figure 9-25 Code segments for instantiated Relay5 process constructs 142
Figure 9-26 Message routine in the Relay5 sample .. 143
Figure 9-27 Message routine in the Relay6 sample .. 144
Figure 9-28 Relay6 process construct for the process:base 144
Figure 9-29 Relevant Relay6 code segments .. 145
Figure 9-30 Output from Bouncel demonstration .. 146
Figure 9-31 ball.proc; Code governing ball motion and scene graph update 147

xix

Figure 9-32 Messages for screen update in Bouncel demo .. 148
Figure 9-33 Bounce2 output with 2,000 particles ... 150
Figure 9-34 Messaging to update the scene graph in Bounce2 150
Figure 9-35 particle.proc - relevant code for updating scene graph in Bounce2 151
Figure 9-36 Brigadel sample output ... 152
Figure 9-37 Output from the Hierarchy demonstration .. 152
Figure 9-38 Sensor track detection and change notification in Battle demo 154

Figure 9-39 Notification of sensor track detection and loss .. 155
Figure 9-40 Messages governing vehicle motion in the Battle demo 156
Figure 9-41 Predefined Tank Formations ... 157
Figure 9-42 Messaging during formation movement .. 158
Figure 9-43 Fire control sequence for a tank .. 159
Figure 9-44 Clean-up after a unit destruction ... 161
Figure 9-45 Shots of the initial platoon configurations in the BattleView of the Battle

d em o ... 16 1
Figure 9-46 Red and Blue tactical views showing each side's knowledge of the

environm ent .. 162
Figure 9-47 Tactical views shortly after the opposing forces encounter each other 162
Figure 9-48 Sample engagement of opposing forces .. 163

xx

"In theory, there is no difference between theory and practice;
in practice, there is."

- Chuck Reid

Chapter 1. Rationale and background

1.1. Overview

Simulation in recent years has become increasingly important in understanding natural systems. In

particular, digital simulation provides a method of hypothesis testing, training, and planning that might

otherwise be prohibitive because of either cost or risk. For instance, it's cheaper and safer to train nuclear

power plant operators on digital simulations than on fully functional equipment. The same claim can be

made for manned space flight operations, as well as, to a somewhat lesser extent, aircrew training.

Industry has become increasingly interested in simulation technologies as the cost of developing prototypes

has dramatically increased. An example of this would be the development of the Boeing 777 airliner.

Boeing designed and digitally tested the 777 for performance and manufacturability before ever building

the first prototype. These tests were conducted using digital simulation (Boeing 2001).

The military has also increasingly relied upon simulation to provide insight into deployment, operations

and support plans, and was instrumental in developing early flight simulators to provide additional training

hours to pilots. More recently, ground and naval combatants have used digital simulation for developing

tactics and training purposes. Simulation systems to assess the overall effectiveness of new weapons and

tactics are also in widespread use throughout the U.S. Department of Defense (DoD). It has become so

important that in 1991, DoD established the Defense Modeling and Simulation Office (DMSO) to

coordinate simulation activities throughout the department (DMSO 2001).

It was in the arena of military simulation that the notion of this dissertation took shape. In 1997, the author

was involved in a simulation exercise to ascertain the operational effectiveness of non-lethal weapons

under a variety of scenarios. The client organization insisted these exercises use a simulation system

known as the Joint Tactical Simulation (JTS)1. JTS did not have the capability to simulate the effects these

new weapon systems were thought to produce in the targets. Specifically, a target was either alive or dead.

Since the purpose of the weapon system was to coerce a behavior in the target, rather than to outright kill it,

there was a substantial effort involved in trying to get the simulation results to reflect the hypothesized

effects.

If there had been the capability to change the behavior of various objects in the simulation that end users

could modify while maintaining the overall system integrity, then the effects of these new weapons could

have been introduced quite simply. It would not have required re-verifying the entire simulation system,

but only the altered portions. This became the ultimate motivation for providing a framework for

describing simulation object behavior in an extensible manner.

The result of this line of thought, and the object of this dissertation, is the Simulation Object Description

Language (SODL - pronounced any way the reader prefers). SODL is an object oriented language, in that

it has the standard ability to inherit behavior from parent classes. It is also completely event driven, in that

object instances can only communicate with each other via message passing. This provides for the

possibility of allowing the simulation to be transparently distributed across a heterogeneous network of

computers while freeing the developer from actually producing the code to perform run-time

synchronization, networking, message sequencing and delivery required to ensure that distributed

simulations process messages in the proper order. Having stated this, we should point out that the actual

run-time system developed to test and support SODL programs runs only on a single processor at the time

of this writing. We took great care to ensure that it could easily be modified to a fully distributed

implementation.

Digital simulation is performed in any of a number of fashions, some of which will be discussed herein at

some length. A digital simulation is broken down into a finite sequence of events. When each event is

handled, the state of the simulation changes in some fundamental way. The difficult part for some types of

simulation is ensuring that these events are handled in the proper order. This is not particularly difficult for

1 JTS was combined with the Joint Conflict Model (JCM) to form the Joint Conflict and Tactical Simulator
(JCATS). These simulators were all developed at the Lawrence Livermore National Laboratory, Livermore

2

simulation systems that run in only one process. In fact, events normally have some sort of time stamp

associated with them, which, if these events are generated out of their intended processing order, can be

placed into a priority queue or some other sorting mechanism to ensure that they are processed in the

correct order.

The situation is not nearly as clear-cut in distributed simulation. On the one hand, if multiple processors

can be brought to bear upon a simulation problem, then an answer can be arrived at in a shorter period of

time than would otherwise be possible. On the other hand, issues such as network latency, lost packets, or

packets received out of order, and clock drift between CPUs in a distributed system can cause

desynchronization between those nodes to occur, allowing events to be processed out of order. When

events are processed out of order, it creates what is known as a causality error (Fujimoto 1990).

There are two basic approaches for dealing with these causality errors in distributed simulation.

Conservative synchronization (Bryant 1977), (Chandy 1979, 1981) seeks to avoid creating these errors by

blocking processing on nodes in a distributed simulation system until additional processing can proceed

without the risk of creating a causality error. Alternatively, optimistic synchronization (Jefferson 1982,

1985a, 1987) provides a mechanism for detecting and recovering from these causality errors. It does this

through state saving, allowing for the possibility of recovery from potential causality errors. When one is

actually encountered, a cascading rollback and event revocation algorithm is used to restore the simulation

system to a state whereby processing the event is temporally consistent with the state of the simulation.

Since it does not block, it can provide a significant speed-up in simulation execution (Fujimoto 1990). The

SODL implementation discussed herein uses an optimistic simulation engine to perform process

synchronization.

Neither of these approaches is appropriate for all simulation systems. Systems where there is a high degree

of interdependence between objects within the simulation may lend themselves to a conservative approach.

Optimistic synchronization may be appropriate for systems in which the components are interdependent to

a limited extent. (Fujimoto 1990) provides a more extensive analysis of the benefits and limitations of each

approach.

CA. For more information refer to (LLNL 1998).

3

The primary focus of this dissertation is the structure of the SODL language. Even though we implemented

a sequential (i.e. non-distributed) runtime system, its usefulness stems mainly from its ability to test the

SODL language structure. The primary rationale for this approach is that the body of work on this subject

continues to grow. The run-time system provided is intended to act as a framework for incorporating these

new results later, and should not be considered a final product.

1.2. Alternative approaches
There are a number of different approaches available to simulation system developers. What follows is a

list of the various types of approaches that are currently in use, their strengths, weaknesses, and some

examples. Table 1-1 provides a brief overview of these alternative approaches.

Approach Description
Full-Implementation All aspects of the simulation engine are built from scratch for a particular

system.
Modular System Portions of the simulation engine are linked into a final executable to perform

some of the more mundane aspects of simulation such as message delivery and
node synchronization. Calls to these library functions are still needed to make
use of the simulation engine.

Simulation Languages The simulation engine is provided as a run-time environment in which
simulation developers describe the behavior of the simulation objects. It is
rarely, if ever, necessary for a developer to make any direct calls to the
simulation engine for messaging, sequencing, or synchronization.

Table 1-1 Alternative Simulation Approaches

1.2.1. Full implementations

Early digital simulations were implemented first in low-level machine languages, and later, as compilers

became available, in traditional structured programming languages such as Fortran, C, and others. All

aspects of the simulation engine, from event sequencing through node synchronization were written and

custom tailored to the specific system implementation. The JTS and JCM simulators mentioned earlier

evolved from simulation systems developed in the 1970's (LLNL 1998). One can open any journal on

simulation to find this approach in use, even to this day.

More recently, beginning in the late 1980's, object oriented programming languages such as C++, Modula-

2, and Smalltalk made certain aspects of simulation development somewhat easier and significantly more

4

intuitive. This increased ease did not extend to the core simulation engine, however. Still remaining were

the complexities associated with process synchronization in distributed simulation systems.

This approach has the advantage that there is a substantial amount of control developers have over

optimizing system performance for a particular task. This flexibility, however, comes at a rather

substantial cost in coding and debugging effort. This is particularly the case for distributed simulation,

where node synchronization issues require extensive and complex code to properly address.

Some examples of full simulation system implementations are listed in Table 1-2.

Name & Producer Description
A sequential simulation system with a distributed user

Joint Conflict and Tactical Simulator interface, allows multiple operators to perform combat
Lawrence Livermore National exercises to test new tactics and weapon systems. Used also
Laboratory for training purposes. Written primarily in C++. Users
(LLNL 1998) include the U.S. Departments Defense, Energy, and

Treasury, as well as some international users.
A distributed simulation system that is currently under

Joint Simulation Systems (JSIMS) development, using the High Level Architecture (HLA) Run
JoineModeling& Simulation Sys s (Time Infrastructure (RTI) as a packet transport mechanism.
Defense Modeling & Simulation Office It is intended to provide an extensive simulation capability
JSTMS Program Office for conducting training and analysis and doctrine

development.

Diffract Diffract is an optical simulation system used for simulating

MM Research coherent light through optical systems. It can be used to
Tucson, AZ simulate optical aberrations and interference patterns in

optical equipment (Mansuripur 1997).

Table 1-2 Some simulation systems used for analysis or training purposes

In addition to the specific simulation systems mentioned in Table 1-2, there are numerous other simulation

packages designed for fields as diverse as computational fluid dynamics to manufacturing. Others are

designed to provide insight into the motions of stars and galaxies, to the workings of the smallest known

particles. Many of these custom simulation systems, though very capable in what they do, are intended for

a specific use that does not readily extend to other uses.

Another area in which simulation is gaining some popularity is in the field of interactive digital

entertainment (by which we mean computer video games). Most of these are built on proprietary special

purpose simulation engines that facilitate event sequencing. Many of the newer games provide the ability

to perform distributed game play over the Internet or via direct dial-up. Some recent examples of these

5

interactive games are listed in Table 1-3. Distributed game play has become increasingly popular, as more

households are equipped with dial up and broadband Internet access. There are even massively parallel

games in which an entire persistent virtual world has been created. Players can come and go as they please,

joining forces with other players to battle against computer-controlled entities, or against other players.

With faster Internet access becoming more widely available, online gaming is likely to continue growing in

popularity and the games themselves will also continue to increase in their complexity as well.

Name & Publisher Description
A successor to the popular SimCity. The Sims allows players to

Thecti S s control people in the virtual environment as they interact with others.
Virtual characters are affected by the inputs their real life controllers

Players control a virtual army in an immersive 3-D environment and
Battlezone and Battlezone H can issue orders to their subordinate units, manage resources and
Activision engage in combat all from a first person perspective. Multi-player

modes are available to play over the Internet and over a LAN.
Players can take control of one of a variety of aircraft, each modeled

Flight Simulator 2000 Pro to resemble the actual performance and handling characteristics of
Microsoft the real world counterpart. Microsoft also provides the capability to

download from the Internet current real-world weather conditions.
A massively parallel virtual and persistent world where players

Ultima Online control a virtual character who can fight wars with other player, build
Electronic Arts structures, or even complete cities. Any changes the players make

persist so that others may interact with those changes.

Table 1-3 Current popular games using simulation technologies

1.2.2. Modular simulation systems

It is sometimes possible to encapsulate portions of the central simulation engine functions in a collection of

libraries, such as event sequencing and some rudimentary message delivery. Some libraries may perform

network communications and synchronization required in distributed simulation. Others provide additional

functionality defining, for instance, the behavior of simulation objects incorporated into a separate

development initiative. The intent of these approaches is to use the libraries with a more commonly

available programming language such as C/C++, Fortran, or Java. Other approaches, such as CORBA,

require programmers to write portions of the simulation system in a different language, the Interface

Description Language (IDL) in the case of CORBA. A compiler translates this code into a more common

object oriented language. Standard compilers then compiles and links with the run-time infrastructure in

the library.

6

Name & Developer Description
A semi-distributed simulation system which has a
number of military entities described in detail as a

Modular Semi-Autonomous Forces (ModSAF) series of C modules. Simulation entity behavior is
United States Army Simulation, Training, and intended to mimic real world behavior to facilitate
Instrumentation Command (STRICOM) training and analysis for military operations.

Simulation state is stored in a central database that
is accessed via run-time engine (STRICOM 1999).
HLA provides a run-time infrastructure to

High Level Architecture (HLA) facilitate distributed simulation. It primarily deals
Defense Modeling and Simulation Organization with network communications, not
(DMSO) synchronization, which must be performed in

custom simulation engines.
Common Object Request Broker: Architecture CORBA is a distribute object system that can be
(CORBA) applied to simulation. As in HLA, a
The Object Management Group synchronization mechanism must be provided to

ensure events are processed chronologically.

Table 1-4 Examples of modular simulation systems

While this approach does free developers from writing the complex code associated with these functions,

there is still a great deal of interfacing with those libraries that must take place. Considerable time must be

spent on the part of the developer to actually learn the API for the library. It is also usually necessary, in

order to get the proper results out of the system, for the developer to have a keen understanding of the

manner in which the routines or classes function (particularly in the case of libraries which provide object

behavior descriptions and those that provide synchronization in distributed simulation).

Some examples of systems that provide this modular approach are listed in Table 1-4.

1.2.3. 4 th generation simulation programming languages

Recent years have seen the development of a number of special purpose simulation languages. Each of

these has been designed to fill a certain niche. The majority of these languages have been sequential

systems, by which we mean that they are intended to operate on only one host computer (i.e. they are not

distributed). They can generally be broken down into two general categories: continuous time simulators

(CTS) and discrete event simulators (DES). The biggest difference between CTS and DES systems regard

how events are generated. CTS events are generated sequentially, while DES systems may generate their

events out of order. Most simulation languages are sequential systems, not capable of operating in a

distributed manner. Some of these sequential systems are listed in Table 1-5.

7

Name & Developer Description
Provides a graphical user interface to perform

Simulink continuous time simulation of systems governed
The MathWorks differential equations. Fully interoperable with

Matlab, and extensible with custom routines from
other programming languages. (MathWorks 2001)
Graphical tool for simulating and analyzing

ProModel processes. Extensive analysis tools are provided
ProModel Corp. as well as the ability to export data to third party

spread sheets for custom analysis.
SOAR The SOAR project is a combined effort between
Carnegie Mellon University, University of several academic institutions and commercial
Michigan, University of Southern California, and ventures. It intended purpose is to bring intelligent
others, Soar Technologies, Explore Reasoning behavior to simulation entities. It is built on top of
Systems, Inc. the Tcl scripting language. (Rosenbloom 1994)
ModSim, ModSim II, SimProcess, SimScript Programming languages for sequential simulation.
CACI ModSim and ModSimII are based on Modula-2.

Table 1-5 Some commercially available 4th generation sequential simulation packages

While sequential simulation technologies are useful for small to moderately sized problems, there are

problem scales where the additional computing resources available from distributed simulation become

necessary. SODL, the language described in this dissertation, is in this category, along with two others:

Yet Another Distributed Discrete Event Simulator (YADDES) (Priess 1990), and A Parallel Object-

oriented SimulaTion LanguagE (APOSTLE) (Wonnacott 1996).

YADDES programs are translated into C and compiled using a standard C compiler. As such, much of the

benefits of object-oriented programming are not realized in YADDES. It comes with both an optimistic

and a conservative synchronization engine for handling messages and processing state changes. The fact

that it can use either paradigm leads to some additional complexity in the language structure, namely that in

order to realize any efficiencies in the conservative techniques, the process topology must be specified at

compile time. It accomplishes this through an extensive specification of connections between topologically

adjacent processes.

APOSTLE is similar in intent to YADDES, but differs by generating C++ code. This enables APOSTLE

to be an object-oriented language, which it is. However, like YADDES, it is designed to work with both

conservative and optimistic synchronization engines (though as of this writing, only the optimistic engine

had actually been implemented). This again requires that the topology of the distributed simulation be

8

specified prior to run time, by stating which outputs feed which inputs. One restriction on the APOSTLE

system is that it only runs on Sparc platforms.

1.2.4. Distributed simulation standards

During the 1980's, the U.S. Department of Defense introduced the Distributed Interactive Simulation (DIS)

standard allowing host processes performing a distributed simulation to communicate with each other using

a common interface. Extensive libraries were developed for DIS, and it became a popular method of

distributing simulation systems. Any DIS certified simulation system was able to send packets to or

receive packets from any other DIS compliant system. This allowed different simulation systems to

operate with each other, even though they had not originally been designed to do so. That is, simulation

system X while DIS compliant may have been intended to work with simulation systems Y and Z.

However, Z may not have been designed to operate with X. Thus, any messages passed from X to Z might

be ignored when they arrive at their destination.

These interoperability issues led the DMSO to propose in 1995 the High Level Architecture (HLA). Here

constructs called "federations" are established for each group of simulation system developers wishing to

have their simulation systems interoperate (Kuhl 1999). These federations define standard object types and

message formats allowing the different simulation systems within the federation to communicate with each

other. DMSO has provided the HLA Run Time Infrastructure (RTI), an extensive set of communications

routines, similar to CORBA. Actual distributed simulation implementations making use of HLA require

developers to write a great deal of code to address the specific issues pertinent to their system's

requirements. Apart from the format of the interface between components, a great deal of effort is also

required to ensure compatible semantic content (i.e. ensuring that the same message means the same to all

of the simulation components).

1.3. SODL system description
Neither YADDES nor APOSTLE makes assumptions about the underlying mechanism managing node

synchronization in a distributed simulation. Since some methods2 require a rigid pre-specification of the

2 Conservative synchronization, described in more detail in Chapter 2 is one such mechanism.

9

communications topology for optimization purposes, this topology must be specified regardless of the

synchronization method employed. This provides additional opportunities for programmers to introduce

errors and complicates message passing in a purely dynamic fashion. More fundamentally, this

specification requires modelers to think in terms that may not be appropriate for their specific application.

For instance, some models might naturally require arbitrary interaction between virtual objects. This

means that the communications topology would need to be fully connected, or some mechanism to forward

messages needs to be introduced into the model.

This thesis introduces the Simulation Object Description Language (SODL) and takes a somewhat different

approach. Like YADDES and APOSTLE, we designed SODL to facilitate distributed discrete event

simulations (DDES). It does this by converting SODL source files into C++. It is therefore, like

APOSTLE, an object oriented language, though perhaps not to the same extent. Where it primarily differs

is in its assumption about the underlying simulation engine, namely that it will always be optimistic 3 in

nature. Optimistic synchronization methods do not take into account communications pathways of a

distributed simulation in any of its optimizations, freeing developers from specifying the distributed

simulation system topology. Messages are simply addressed and delivered to the members in the recipient

list. This notion makes SODL, a completely event driven language requiring inter-process communication

to occur exclusively through message passing.

The guiding principle directing design decisions of the SODL system has been to make as clean a split as

possible between the simulation engine and the behavior of the objects within the simulated environment.

The behavior specification derives directly from the model description, and only rarely do simulation

system restrictions interfere. Thus, SODL provides developers the freedom to express object behavior in

terms that naturally arise from a model without having to be distracted with performing unnecessary run-

time system declarations or calls to the underlying simulation engine to handle some action the engine

could perform on its own.

SODL provides a framework upon which simulation system developers can simulate models that make

extensive use of the notions of stimulus-response. That is, each of the objects in a distributed simulation

10

system has a state and makes changes to that state based upon external stimuli. These stimuli can originate

from any of the other objects in the simulated environment and need not flow over fixed communications

pathways. SODL does retain the ability to optionally specify the communications pathways, but the

decision to use this feature is solely at the discretion of the model maker and simulation system designer,

and is not imposed upon them by constraints within the SODL language specification or its run-time

system. Thus, most any model that can be framed in terms of stimulus-response can be directly coded into

SODL source files from such an interaction specification.

There are some drawbacks to this approach. By removing the necessity of defining the topology, we lock

ourselves into an optimistic approach, which is not always the best for a given application (Fujimoto 1993).

Another problem is that there is no convenient way for one object instance A to directly manipulate or

access the data of another instance B. Instead, A must send a message to B, and it is B's responsibility to

manipulate its own data, or to reply to A's query about its internal state data. While this may seem

awkward to code, it does more closely reflect the way things happen in the real world. That is, when

objects interact in the physical world, they do so primarily by sending messages of one form or another.

One person will speak to another. When an anti-armor round strikes a tank, it can be thought of as having

sent the message "I just hit you" to the tank. Thus SODL' s use of pure-event programming is, in the end,

rather natural.

SODL draws a distinction between simulation objects (which SODL calls processes) and the data that is

transferred between them (which SODL calls messages). Messages can have arbitrary data fields and

methods to act upon them in a manner analogous to objects in traditional object oriented programming

languages. The message with its payload is transferred between objects in a completely dynamic manner

(meaning that no pre-specified topology is required to direct the message traffic). Processes, in addition to

having internal data and methods, are able to send and receive messages. The process modifies its internal

data upon receipt of a message.

3 Optimistic simulation is described in more detail in Chapter 2.

11

SODL processes are also modal in nature; they can turn modes of operation on an off based on the message

stream they receive. This allows a process to act one way upon receipt of a message at one time, and act

completely differently upon receipt of another message with the same payload while in a different mode.

This conveniently provides developers with the capability of radically changing a simulation object's

behavior to a given stimulus (message receipt) with little difficulty. For instance, a simulation of an ant

colony might have the ants behave in one fashion when they are searching for food, another when they

actually find some and gather it, and still another when their nest comes under attack from a neighboring

colony. A developer need only change modes when a certain condition is met, thereby fundamentally

changing the object's behavior.

1.4. Scope
The primary purpose of this research was to provide a logical framework for defining object behavior in a

virtual environment. To this end, we introduce a conceptual framework for discussing simulation, and

upon this framework, define a language structure allowing simulation system developers to easily and

quickly specify these object behaviors. When it became clear that a stimulus-response description could

provide this specification, distributing the simulation across a network of computers seemed like a logical

but secondary extension of the underlying work.

What we specifically avoid in our analysis are any measures of overall system performance. The rationale

is that the current SODL run-time system can be modified to optimize its performance by taking advantage

of new algorithms or techniques. We instead concentrate on the language specification itself and note that

there is little in the way of programmer interface with the simulation system. This allows simulation

system developers to concentrate on implementing a simulation of a model, rather than with the mundane,

often error prone additional work other simulation systems require.

We provide in this document a description of the sequential simulation system, intended to simulate a

distributed system and used to test SODL. In addition, a number of sample programs and associated

descriptions are provided to gain some insight into the capabilities and limitations of the language

specification and any run-time system that might eventually be employed to support it.

12

Chapter 2. Digital simulation

2.1. Overview

sim-u.late - vt. 1. To give a false appearance of; feign 2. To look or act like.4

Simulation has historically allowed scientists and analysts of various fields to test hypotheses about

naturally occurring or hypothetical systems. For much of its history, simulation involved either a series of

hand computations or analog devices designed to simulate some physical system. More recently, digital

computers have allowed more sophisticated simulations in terms of their computational complexity, and

been used in a wider variety of ways. Consider Bernoulli's description of airflow through a venturi. Prior

to digital computers, aeronautical engineering relied heavily upon hand computations and wind tunnel

testing (analog simulation). With the advent of digital computer technology, we now have the ability to

cheaply and easily perform high fidelity digital simulations of airflow around an airframe.

While digital simulation systems are useful in describing physical systems that assist in analysis, other have

been applied to training people to operate equipment that is either too expensive or too dangerous to

actually train on. Examples of simulation for training include space flight operations, as well as nuclear

power plant operations.

For digital simulation, we can create virtual environments with which people can interact more safely, and

in some cases more cost effectively than the real-world systems. Yet, these virtual environments only exist

as a collection of l's and O's in a computer's memory system and only reflect the real system in a way that

is meaningful to those conducting the analysis or participating in the training.

The range of applications in which simulation might be useful is quite varied. As such, no one approach to

simulation will be appropriate in all circumstances. In some instances, a few lines of equations scribbled

on the back of an envelope might be sufficient for a particular purpose. In others, hundreds of digital

computers working in concert with each other might only scratch the surface of some complex system

dynamics.

4 Webster's New World Dictionary of the American Language, David B. Guralink, Ed. 1979

13

For purposes here, we will be considering primarily simulations performed with a digital computer.

2.2. Modeling
Before actually getting to the point where a simulation is of any use, we quite often need to describe in

some unambiguous manner the dynamics of the system under consideration. Modeling is this process of

describing the system, and although it is not dealt with in any detail here, it is an integral part of the overall

simulation process, and needs to be adequately tackled prior to writing any code. The modeling process in

many cases will provide significant insights into a system's dynamics - insights that may actually obviate

the need for simulation.

Before dealing directly with modeling, however, we need to provide some context. What follows is a

framework around which we might construct some pertinent notions and to promote an understanding of

some of the constraints inherent in digital simulation. While we make no claim as to whether or not any the

following formalization of the modeling and simulation process appears in prior work, we developed and

included it here because of its apparent absence in texts on the subject. Prior to formalizing this context,

we provide a brief overview of these notions.

We start by introducing the notion of a universe. A universe may have multiple time dimensions (called

the universe's temporal component). For each element in the temporal component, the universe has exactly

one state. We normally are interested in universes with only a one-dimensional temporal component

subject to some strict ordering. This induces an ordering on the universe's states, and allows us to impose a

causal relationship between states.

Since a universe has a broader scope than we are normally interested in, we pare away much of the state

information for a universe and concentrate upon one small portion of the universe, called a system. For the

sake of discussion, let us consider the system of an object undergoing projectile motion under the influence

of gravity. When considering this physical system we can ignore many of the minute influences that act

upon this object, and look only at the very limited scope of the object and the primary gravitational sources

acting upon it.

14

We then develop a model describing the system. Modeling formally describes how the system behaves. In

the case of the object undergoing projectile motion, we look to Sir Isaac Newton's laws of motion to

describe how the projectile moves. We note that the model is something that we humans have done to

describe a physical process. It in no way dictates how the physical system really behaves. For instance,

Newton's laws of motion are only an approximation of how objects really move. Finer predictions are

possible with the introduction of Einstein's theories on Relativity. The physical system always behaved in

a certain way regardless of what people say or think about it; it took Newton and Einstein to propose

models describing this behavior.

Finally, we will want to study this model, to see how well it predicts physical systems, and perhaps learn

new things about the system. We use simulation to perform this prediction. In the case of ballistic motion

in a vacuum, we can simulate the behavior of physical systems quite easily with a pencil and paper. By

employing a digital computer, we can incorporate other aspects of Newtonian motion (windage, or N-body

interactions) to perform higher fidelity simulations in shorter amounts of time.

From here, we formally introduce the concepts outlined above.

Given an indexing set P and family of sets Vp, pe P, let us define the Cartesian product pp

pel' (2-1)

and the family of canonical projections (Hungerford 1974) gp

:i "pp -+V- P (2-2)

where rp(v)=vp, the pth component of v.

From this, given a set of parameters P, we can define a universe Up

15

Up c P,- H V (2-3)
pI P

That is, for purposes here, the universe is simply a subset of the Cartesian product of the sets V,. In order to

maintain a degree of generality, we make no assumptions about the set P, or any Vp, pc P, specifically, we

make no claims as to their cardinality nor of the elements they may contain.

Let TccP, P'=P-T. We can redefine Up in terms of P' and Tby

U 1 ;pP, X PT (2-4)

We refer to T as a temporal component of P exactly when all of the following conditions are both satisfied:

U1. For all te Pr there exists a unique p(t)e pp, such that (p(t), t)e Up.

U2. up= U(p t)
IE P

When T=O is the only temporal component of P for the universe Up, then we say that Up is a static

universe. When Up is not static, it is said to be a dynamic universe. Though in general there is no

restriction on the set T, we normally think of universes having T={RI, where R is the set of real numbers,

as their only temporal component. This provides a natural ordering of the states in the universe, and offers

a convenient glimpse into how we might perform digital simulation - by calculating states in chronological

order.

We will not usually be interested in considering the whole of Up, but rather some subspace of it. Therefore,

given a universe Up, we define a system SRXpT over a collection of parameters RcP' as

SR XPT E-lrV
xeRUT (2-5)

We then define r:pT--->SR such that

iz,(r(t)) = 7z(p(t)) for all te pr and iE R. (2-6)

16

to ensure that the parameters in the system take on the same value as their associated parameters in the

larger universe given the same time value.

From this, we can create a model in which we simplify the actual behavior by aggregating system

parameters and create rules governing how these parameters interact.

First, we pick a finite set D to serve as an index for parameters in our model MDXPT. We then choose a

functionf.R-D to aggregate all the system parameters into more manageable modeling parameters. So as

not to overly complicate the model, we will impose the restriction on D and f that for all ye D, there exists

xc R such that ftx)=y. That is, f is surjective. If we were not to have this limitation, we could have a

collection of model parameters that would need to be tracked, even though there is no analogous collection

of parameters in the system SR we are considering.

Next, we need to define another surjective function g:pR-->pD aggregating the state of the system SR into

some state in the model MD. The specific definition of this function, like f, is at the discretion of the

modeler.

From this we get the definition of a model over a collection of modeling parameters D, MDXT by

MD XPT Hw,
x.DUT (2-7)

and we define d:pT -4MD such that

,z(d(t)) = r,(g(r(t))) for all te P2o and ic D (2

(2-8) requires the model to approximate the system SRXpT to some problem specific degree and requires a

great deal of discretion on the part of the individual defining the model to determine an acceptable error

level.

The last part of the model is to describe how the various parameters interact with each other. This involves

explicitly defining the family of functions ;.(d(t)) in a manner that will satisfy (2-8) to the desired degree.

17

An important consideration here is that models are closed, in that there is no influence upon the model

parameters from a source other than other model parameters. Any such external dependence would

become part of the model. There is no restriction on the system from which the model is derived.

However, we are generally well advised to pick the system parameters wisely so that there is a reasonable

expectation that no outside influence can significantly adjust any of the system parameters. We make no

claim about the nature of the behavior of Up or of how its parameters interact.

As mentioned earlier, the process of modeling a system through this abstraction is at least as important, and

quite often just as informative, as actually performing a simulation. It can provide a great deal of insight

into the underlying dynamics of the system that would have otherwise been unrealized. Picking the right

parameters in the system and properly aggregating them is critical in developing an adequate understanding

of the system under consideration. It is somewhat of an art form to create a model, given only raw data and

observations; an art form we will explore no further in the confines of this publication. There is a great

deal of material available for creating models and some assistance in this regard may be found in books

such as (Fishwick 1995) and (Morrison 1991). Both have an extensive list of additional references that

could be useful in specific modeling applications.

2.3. Digital simulation
From this point on, we will only be dealing with universes with the temporal component T={RI, the

collection of real numbers. This imposes a complete order on the universe's states if we consider them in

terms of the time at which each state occurs. When performing a simulation, we are concerned with

causality. That is, a universe's state p(t) can only be affected by earlier states p(s) s<t. Simulation will

seek to calculate the state of models for a collection of times of interest to the modeler.

Once we have a model of a system, the next task is to get a computer to tell us interesting things about the

model we can project back to the system under consideration. The problem with digital computers,

however, is that they are not very good at expressing with arbitrary precision state values we would like to

consider in our model. They are also hamstrung by the fact that each operation a computer performs

requires some non-zero time to compute. We formalize these constraints as follows:

18

1. Digital computers perform only finite precision arithmetic

2. Each operation on a digital computer takes some time, t>O, to perform

We note that by virtue of these restrictions, each simulation of a model must be broken down into a finite

number of discrete, contiguous intervals. We will denote these intervals 10, I1, ... In- and define each by

]i=[tj, tijl) with t0<tl< ... <tn.

Condition 1 also requires us to limit our notion of the sets D and T. Dealing with T is a straightforward

matter if we define R* = {to, ti, ..., tn-I1, and Tr={R*1. D, on the other hand, is not as easily handled in a

general and formal sense. Each set of model parameter values Wi, iE D, must have a finite collection of

associated approximations Wj* that a digital computer can represent and manipulate.

We once again perform an abstraction, this time from MoxpT to the digital simulation LDXPT.

LD XPT. HW *X PT'
xcD (2-10)

We go on to further describe the properties of LDxR* with It*-ti<E, E>O and sufficiently small, we define

l:pT,->LD

r (l(t*)) = T,(d(t)) V t*e Pr*, ic D (2-11)

All of these abstractions and simplifications of the underlying system lead us inevitably to conclude that

there can be a substantial difference between a real world system, and a digital simulation. This in no way

mitigates the importance of simulation, but instead serves as a caution not to put too much credence in the

output of one, especially if sufficient testing of the model and an associated simulation has not been

performed. Specifically, there needs to be on the part of the modeler a rather deep understanding of the

system being considered. This understanding needs to include an awareness of the degree of dependence

upon initial conditions of the system (how chaotic the system is), and how closely the model tracks the

system's behavior in reality.

19

To address these concerns, there is a Validation, Verification, and Authentication (VV&A) process within

the United States Department of Defense whereby models and simulations are fine-tuned to more closely

reflect the way the system actually works (DODI 1996).

Verification involves testing a simulation system to ensure that it reflects to an acceptable level of accuracy

the specific model behavior for the system under consideration. That is, it verifies that the simulation

system produces results that are consistent with the model it is supposed to simulate. Validation is the

process of making sure that the model is a reasonably accurate representation of the system under

consideration. This is normally accomplished after verifying the simulation by comparing results from the

simulation with observations of the physical system.

Validation and Verification are two steps in an iterative process. A model is initially created to represent

some system. It then is coded into some sort of digital simulation. Results from the simulation are

compared to those predicted by the model, to ensure that it accurately reflects the intentions of the model

makers. Once that is done, the simulation results are compared against real-world data to see if the model

is an acceptable portrayal of the real world system. Refinements to the model are then made so that it more

closely represents the system. These changes are then coded in the simulation, which must, in turn be

verified again. This process is repeated until the simulation produces results within an acceptable tolerance

of the real-world system.

Once the model and simulation are validated and verified respectively, an accreditation agent will certify

that the model and simulation are fit for some specific use. Any enhancements to the model will require

repeating the full VV&A process. Simulation changes require only verification and accreditation.

There are a number of techniques for actually performing the simulation on a computer. The techniques

can be grouped into two main camps: Continuous Time Simulation (CTS) and Discrete Event Simulation

(DES).

20

2.3.1. Continuous time simulation

Models requiring CTS approaches change their state in a continuous fashion and represent some continuous

change in the system being analyzed. Such models quite often have as their rules a collection of partial

differential equations governing parameter interaction. The field of numerical analysis is filled with

numerical methods for simulating such equations. Euler's method is a simple approach that may be

appropriate for some applications. Other systems may require more complex approaches such as Runge-

Kutta. In any event, (Press 1992) provides a rich source of C code and some brief explanations for many of

the most popular numerical methods for simulating systems of partial differential equations. (Atkinson

1989) is more theoretical in nature, not providing much in the way of source code, but providing helpful

insights into some of the more common approaches. Finally, (Isaacson 1966) provides even more insight

at the cost of being quite difficult to read.

A continuous time model is then formally defined as an MDxpT such that there exists s0e PT such that for all

E>O there exists s~e (so-E, so+E) satisfying

d(so) # d(s) (2-12)

As indicated above, even though the model state may continuously change with respect to time, the

limitations of digital simulation require that it be broken up into suitably small time slices. Certain

numerical techniques may change the size of these time slices, so we will make no specific assumptions

about them. The goal of the simulation developer is when given the history 1(to), l(t), l(tm.i) to

determine l(tm) for m _<n.

Since CTS systems are not the focus of this dissertation, we will not discuss them any further. More

information on CTS systems is available in books such as (Hockney 1988), which offers a very extensive

list of references that can be useful for specific applications.

2.3.2. Discrete event simulation

Models that can be thought of as changing in some fundamental way at only discrete instances of time are

known as discrete event models. Though the system the model is meant to represent may be changing

21

continuously, the model need not reflect that change. This is especially true for models of continuous

processes, the partial differential equations of which can be exactly solved. Ballistic motion for instance

can be solved exactly if certain simplifying assumptions can be made. Though an object undergoing

ballistic motion is continuously changing its position, the parameters governing that motion are only

changed at discrete instances of time. Thus, it can be modeled quite simply using a DES system.

Like CTS systems, DES systems are broken into discrete time slices. Unlike CTS systems, however, the

model state is considered static between these iterations. Specifically, for all tE [tin, tinl), 0 m<n and for all

se [t-, tp), O<p!n we have:

d (t) d(t) (2-13)

d(tp) d(s) (2-14)

This translates well into the actual simulation, Equation 2-10, since we are forced to deal with things in

discrete time slices by virtue of our restrictions.

Another major difference between CTS and DES systems is that the events needing to be processed in a

DES system may not be generated in the order they are to actually be processed5 . This has the potential to

impact simulation system performance since sorting an unsorted list of objects has Q(n-logn) time

complexity. Practically speaking, however we might be able to do a little better. First, we note that we can

never schedule an event to take place in the past, since that would violate causality. If we can further

assume that the number of pending events does not exceed some constant value M (which is independent of

n the total number of messages processed in a simulation run) then insertion into the pending event queue

can be performed in K2(logM) = 9(1) time. Thus the overall time complexity for processing n events

actually ends up being Q(n-logM) = L2(n).i2(logM) = U(n). This is a reasonable simplifying assumption. If

there is no such M then the number of pending events is not bounded, and will grow to fill the system

5 This is perhaps the most important difference between continuous time and discrete event simulations. If
discrete events are generated out of order, a discrete event simulation system is required to ensure that they
are processed in the proper order.

22

memory eventually causing an abnormal termination of the simulation. In such cases, we will have to

bound n.

2.3.3. Distributed discrete event simulation (DDES)

The focus of this dissertation is on distributed discrete event simulation. By this, we mean a discrete event

simulation that is performed in a multiple instruction, single data (MISD) or a multiple instruction, multiple

data (MIMD) environment (Fishwick 1995). Significant speedups can be achieved when additional

processing power is applied to a simulation problem. The major complication in doing this stems from the

fact that events need to be processed in the proper order, requiring a certain level of synchronization

between the various nodes in the distributed simulation. This can be mitigated largely in MISD simulation

topologies with some additional code to provide for proper synchronization. This is not nearly as

straightforward in the case of MIMD topologies. It is not hard to imagine a circumstance whereby a

message is delivered for processing to a node in a distributed simulation, only to discover that the node has

already progressed beyond the intended processing time of the incoming event. Such errors are called

causality errors (Fujimoto 1990).

At this point, we introduce notation common in most of the literature on distributed discrete event

simulation, that being Physical Processes (PP) and Logical Processes (LP). If we further partition D into

the N sets Do, D1, ... , DN_1, we can induce a collection of physical processes PPi*, i<N, by

PP*c WX
xEDi UT (2-15)

with the following properties for each PPi*, i<N and we can define PPi: U1-->PPi* which satisfies

7,x(PPi(t)) = r(d(t)) for all tE Ur, xE Di (2-16)

This then induces the logical processes LPi* similarly by

LP*c 1 fWx
ID, UT* (2-17)

23

and we define LP:p.--4LPi* so that it satisfies

c(LPi(t)))) for all te pr*, xe Di (2-1)

From this point, we will drop the * from LPj* and PPj* when referring to the logical and physical process.

We will explicitly use LPi(t) and PPj(t) to refer to the states of LP and PP at time t, respectively.

Simulation then becomes defining or computing the collection of functions, eij(tg, tk), called events, that

transform LPj(tk-1) to LPj(tk) for j<N, O<g<k:n. This notation indicates LPi(tg) scheduled the state change

from LPj(tk-l) to LPj(tk). These events can be thought of as messages transmitted between logical processes,

containing enough information to allow receiving logical processes the opportunity to properly change their

state. Thus, upon receipt of a message LPj will change its internal state and issue additional output events.

DDES Approach Description
Causality errors are prevented from occurring, usually through some sort ofblocking mechanism on each LPi.

Optimistic Causality errors are detected and, when they occur, the simulation system will
Ims recover from them.

Table 2-1 Distributed Discrete Event Simulation approaches

In distributed simulation, each LPi could reside on different host processors, making communication via

message passing a natural mechanism for inter-process communication. The problem becomes how to

order events on each of these logical processes without creating causality errors. Alternatively, an

approach at distributed simulation might allow causality errors to occur, but with sufficient care, a

mechanism to detect and recover from them might instead be employed. These are the two main

approaches used to ensure that the temporal integrity of each logical process remains intact. They are

contrasted in Table 2-1.

Conservative techniques were the first to be adopted and employed in distributed simulation. There are a

number of different algorithms available; two of the most popular conservative approaches are the Null

Message Algorithm (NMA) (Chandy 1979), (Bryant 1977) and the Chandy-Misra Algorithm (CMA)

(Chandy 1981). NMA prevents deadlocking states from being achieved while CMA has a mechanism to

24

detect and recover from them6. These algorithms normally require the specification of a rigid

communication topology whereby messages are sent from the outputs of one LP to the inputs of another

through fixed channels. Knowledge of this topology - specifically, the topology's dependency graph - is

critical in either avoiding or detecting and recovering from deadlocked states and for preventing causality

errors.

Optimistic techniques have their origins in the notion of Virtual Time (Jefferson 1985a). Here all events

and LPs have a time stamp that is used to maintain temporal consistency. Suppose an LP at time tj receives

a request to schedule an event at time tk<ti. The LP then must restore its state to time tk. It must also revoke

any events it issued after time tk. The LP can then process all of the events it has for time tk and later. The

memory obsolete data occupies is periodically reclaimed in a process known as fossil collection.

The Time Warp Operating System (TWOS) (Jefferson 1987) was a research initiative in the late 1980's and

early 1990's to investigate the performance improvement that could be realized through optimistic

synchronization applied to distributed simulation. There is considerable literature available on the actual

implementation (Reiher 1992, 1990c), debugging and optimization (Reiher 1990a, 1991b), and related

topics (Reiher 1990b, 1991a).

The SODL system described herein makes use exclusively of optimistic synchronization based heavily on

the approach in TWOS. While this may be problematic for some applications, (notably those with a high

degree of coupling between logical processes) these are sufficiently extreme cases that their exclusion

seemed a reasonable tradeoff, especially since other simulation languages (YADDES and APOSTLE, for

instance) are designed to work with either conservative or optimistic approaches. The plus side of this

tradeoff is that the simulation system developer is able to construct a much more loosely coupled

simulation topology (since specification of communications channels are not necessary in optimistic

simulation).

6 A deadlock state in a distributed simulation is one whereby, due to a circular dependence of each of the

logical processes, none of them can make any progress. It can be considered a generalization of the Catch
22 problem.

25

This then is context in which we conduct simulation. We have a universe, perhaps the one we all enjoy, or

some hypothetical one, which has a host of systems within it. Some of these systems may exhibit behavior

we would like to better understand. In the modeling process, we make formal behavioral descriptions of

these interesting systems, based on the behavior we either conjecture or observe. We then simulate these

systems to see if our model is an adequate representation of the system we are trying to understand, and

make changes to more closely reflect it if it is not. Once the simulation and the model both adequately

represent the system, we use the simulation to draw new conclusions, allowing us to better understand our

world.

Chapter 3 discusses in more detail the notion of optimistic simulation, and describes in general terms how it

is employed in the SODL run-time system.

26

Chapter 3. Overview of optimistic synchronization

3.1. Overview
The notion of optimistic synchronization came about in the mid 1980s (Jefferson 1982) in response to one

of the criticisms of conservative methods. This criticism was that poorly balanced loads tended to render

many LPs idle while they wait for slower LPs to complete their designated tasks, even when there may not

be any specific dependency between the blocked LPs and those performing computations. While poor load

balancing still adversely impacts optimistic synchronization, it does so only in cases where there is a data

dependency between faster LPs and slower ones. Still, it is this one characterization that distinguishes

conservative from optimistic synchronization; conservative synchronization attempts to avoid causality

errors, while optimistic synchronization attempts to recover from them (Fujimoto 1993).

One of the problems with distributed simulation is that messages in transit between sender and receiver

nodes are not always completely accounted for. These messages in transit can take an arbitrary amount of

time to be delivered, and they may not necessarily be delivered in the order they were transmitted. They

need to be accounted for in any distributed simulation algorithm.

In this chapter, we continue the analysis begun in Chapter 2, directed at the notion of optimistic simulation.

Recall that a distributed simulation has a collection of logical processes LPi, i<N, and a finite number of

states LPi(td) for t T*. Logical processes transition from LP(td-1) to LP(td) in response to processing an

event e, i(tg, td), which was generated on LPj(tg). In this case, LPi is the destination logical process, and LPj

is the source logical process of the event. The event processing time stamp, the virtual time at which the

event is actually processed, is td. Finally, the event generation time stamp, the virtual time at which the

event was actually generated, is tg. We also will use the terms "event" and "message" more or less

interchangeably throughout the remainder of this presentation.

We impose some restrictions on how the various LPs in the distributed simulation may behave:

1) In response to an event eij(tg, td), LPj(td-1) may change its internal state to LPj(td), and transmit a
(possibly empty) collection of output events.

2) No LP may directly access the internal state data of another LP.

27

3) Events are time stamped. All events processed by a particular LP must be processed in time stamp
order.

4) All events, eij(tg, td), must be scheduled for some future time. That is td>tg.

That in mind, we describe the basic Time Warp algorithm (Jefferson 82). We start by describing the

various data structures we will need to facilitate node synchronization on each LP. Table 3-1 lists these

data structures and describes how we will be using each of them.

We need to provide a mechanism for revoking messages that have been transmitted, in the event that this

should become necessary. We therefore introduce the concept of an antimessage. Each antimessage aij(tg,

td) is associated with a particular event, eij(tg, td). If LP receives an antimessage for an event, LP removes

it from its event queue without processing it.

Data Structure Description
This data structure is priority queue7 that places the earliest
event at the top. There should be some mechanism whereby no
two messages have the same chronological value, despite

eventp_queue(i) having the same time stamp value. This can be accomplished
by appending a unique ID field to act as a tiebreaker in the
event of identical time stamp values. The next event to process
is at the queue's top.
This data structure is also priority queue that stores inbound

antimessage p queue(i event revocation requests. They are ordered in the same
e e echronological order as their associated events, with the earliest

antimessage always at the top of the queue.
This data structure, a traditional double-ended queue, retains
copies of the state of LPi for each event that is processed. Later

state queue(i) states are at the back of the queue, while older states are at the
front. The current state is normally inserted at the back, and
older ones are removed from the front.
This data structure, which can also be implemented as a double-
ended queue, retains a copy of each of the events that LPi
processes. As each event is processed, it is inserted at the back
of the queue. Older events are at the front of the queue.
This data structure can also be implemented as a double-ended
queue. It retains a copy of all messages generated on LPi, with

output event queue(t) the latest ones being pushed to the back of the queue, and the
oldest in the front of the queue. They are ordered according to
their generation time, tg, not their delivery time, td.

Table 3-1 Data structures needed for implementing the Time Warp algorithm

7 Priority queues are discussed in more detail in (Cormen 1990), pp 149-150.

28

1) The state of each LPi(start time) is initialized. Bootstrapping events are also scheduled in
each event_p_queue(i). The remaining queues should be empty.

2) While there is an LP with at least one message to process or there are messages in transit:

3) Push the current state, LPi(t), into the back of state-queue(i).

4) While the next message in antimessagep-queue(i) revokes the next message in
event-p-queue(i), remove and discard the top message of each priority queue.

5) Process the next event eji(tg, td) in event-p-queue(i), and push it into the back of
processed evenLqueue(i). This results in setting the state of LP to LPi(td) and sending any
outbound messages to the intended recipient LP's. A copy of each of these outbound
messages is pushed into the back of the output-event-queue(i).

6) Upon receipt to LPi(t) of the event eji(tg, td), if td>t, it is inserted into the event-pjqueue(i) to
be processed in chronological order with the other pending events. If td<t, then a rollback to
time td is performed, and eji(tg, td) is scheduled with the remaining events.

a. To recover state LPi(td), pop from the back of state-queue(i) until the back element
has a time stamp t<td.

b. Remove from the back of processed event~queue(i) each event eji(tg', td') with time
stamp td'>td, and reinsert it into event-p-queue(i).

c. Remove from the back of output-message-queue(i) each event eik(tg', td') that has
generation time stamp tg'>td, and send the associated antimessage aik(tg', td') to LPk.

7) Upon receipt to LPi(t) of the antimessage aki(tg, td), if t<td, then insert aki(tg, td) into
antimessage-p-queue(i). If t!td, then perform the rollback to time td described in 6 a-c above.

8) Periodically update the local estimate of the global virtual time, GVTEi

a. Pop from the front of state.queue(i) all states prior to GVTEj except the latest one
prior to GVTE.

b. Pop from the front of processed eventqueue(i) all events with delivery time stamp,
td<GVTEi.

c. Pop from the front of outputevent-queue(i) all events with generation time stamp,
t,<GVTEi.

Figure 3-1 Synopsis of the Time Warp algorithm

We also need to introduce here the concepts of Global and Local Virtual Time (GVT & LVT respectively).

Definition 3-1: Given a logical process LPi, the Local Virtual Time for LPi, LVTi(r) at real world time r is

defined to be the time stamp, tdi, of the last event processed eji(tgi, tdi) at or prior to real world time r.

29

Definition 3-2: The Global Virtual Time at any real-world time r is defined as:

GVT(r) = min U LVT (r)U MT(r)1 (3-1)

Where MT(r) is the set of message processing time stamps of messages in transit at real world time r.

Here, LVTi(r) is defined as the local virtual time of LPi at real world time r. Practically speaking, the GVT

computation is fairly complex, though there are a number of algorithms available, notably (Bellenot 1990),

(Fabbri 1999), and (Lin 1989). In all cases, the GVT value that is actually used approximates the real

GVT. This is fine provided it does not overstate the actual GVT value.

We describe the basic Time Warp algorithm in Figure 3-1, using variables described in Table 3-1. There

are a number of algorithms available to perform the GVTEi computation referenced in step 8. We discuss

one such algorithm in section 3.5 below.

3.2. State saving

-" z- r- - r t

(a) state queue(z): LP(t) saved states. LP,(20) is
the current state

(b) processed event queue()

(c) output event queue(i): Eache, ejj, e, eik, and e,j will be delivered to LPj, L~j,
LPk, and LPI respectively for processing at the proper time.

Figure 3-2 Saved state data of sample logical process at time 20

30

When LPi receives a straggler, which is a message with a processing time stamp less than the LVTj at the

time of delivery (Fujimoto 1993), LPi's state must be restored to a time that makes processing the straggler

temporally consistent. Therefore, there is certain data needing to be saved in order to facilitate this state

recovery. This includes the state of each LPi, all processed events prompting state changes in LPi, and any

events LPi generated because of processing earlier events (Reiher 1990b). Figure 3-2 depicts a typical

implementation of the state saving process. This is somewhat different in the SODL run-time

implementation, where several LPs are aggregated together into what is called an Engine. However, the

same general idea is employed.

Figure 3-2 (a) shows the various LPi(t) values as the state of the logical process at time t. Each eij(tg, td) is

an event scheduled for LPj generated at time stamp tg and intended to be delivered at time stamp td. The tg

time stamp is only used by LPi to facilitate the event revocation in the rollback mechanism. The td time

stamp is used only by LPj to properly order the event. The bold items in the figure 3-2 (a), (b), and (c)

represent the components added to their respective double ended queues after processing ei(5. 5 , 20.0).

As events are processed and removed from event-p-queue(i), they are stored in a

processedevent queue(i). When an event for LPi is processed for a time stamp later than the one that is

currently at the back of state-queue(i), a copy of the back element is added at the queue's back end, and

the time stamp changed to reflect the event time stamp. The event is processed on the new back element,

and any outgoing events are inserted at the back of output event-queue(i). The processed event is also

inserted at the back of the processed event.queue(i) after the LP has completed processing the event.

3.3. Fossil collection

Since events can be scheduled to occur only in the future (per restriction 4 above) we can be assured there

are no events processed before the Global Virtual Time (GVT).

Figure 3-3 reflects the data stored in the LPi depicted in Figure 3-2 after receiving a notification that the

GVT is not earlier than 7.5.

31

Upon notification of an update of the GVT, the process of reclaiming memory occupied by obsolete data

can be performed. By restriction 4 above, no event can be sent into the past. Therefore, since the GVT is

the lowest time stamp of all of the LPs in a distributed simulation, no pending events prior to the GVT

remain. This fact allows us to reclaim most of the saved LP internal data with a time stamp prior to the

GVT. Specifically, all members of processed-event-queue(i), eji(tg, td) where td<GVT can be removed

from the front of the processed-event-queue(i). This is easy to do since they were entered into the

processed event from the back by their td value. Similarly, all members of output eventqueue(i)

generated on LPi where tg<GVT can likewise be reclaimed as no rollbacks can restore the LP to a state with

time stamp prior to the GVT.

(a) state queue(z)

(b) processed event queue(i)

(c) output event queue(i)

Figure 3-3 Result of fossil collection with GVT=7.5

The story is slightly different for the saved state data in the state-queue(i). Since the GVT is 7.5, we need

to be able to recover state data for any time after 7.5. However, the earliest state we have after 7.5 has time

stamp 10.5. This will do us no good if we need to recover state data for time 8.0, should that be necessary.

The solution is to remove saved state data from state-queue(i) up to, but not including the last time prior or

equal to the GVT. Having done this, we can now recover the state to any point after 7.5. Since there can

be no state changes in the LP for time stamp values in the range [5.5, 7.5], it will just be LPi(5.5).

32

This fossil collection process can serve a second purpose, other than just reclaiming memory. Specifically,

during fossil collection, we can perform any irrevocable activity. Such activity could include writing data

to a log file (or any 10 activity for that matter) or allocating or deallocating memory not specifically related

to the synchronization protocol.

3.4. Rollback (state recovery)

(a) state queue(i) LP,#) saved states. LP,(5.5) is the current state

(b) processed event queue(i): Events ek, (5, 10.5) and el,,(5.5, 20), which had
been processed earlier were reinserted into eventp_queue(i).

P P~

(c) output event queue(t): Events e1j(20, 21) and e,,k(2 0, 21) were revoked by
sending antimessages a11(20, 21) and aik(20, 21) to LPj and LPk respectively.

Figure 3-4 Results of a state rollback on LPi to time 6.0

Given LPi(t) and a newly received event eki(tg, td) is called a straggler any time td<t (Fujimoto 1993). Upon

receipt of a straggler, LPi(t) must become LPi(td) in order to process the new event in a manner consistent

with causality. Rollbacks can also occur when receiving an event revocation, aji(tg, td) with td<t.

Figure 3-4 shows the effect of a rollback to time 6.0 from the state indicated in Figure 3-2.

Here, we see that all of the processed messages with td>6.0 were popped from processedevent queue(i)

and reinserted into event-p-queue(i) for processing after the new event. All of the members of

output-event-queue(i) with tg> 6 .0 were revoked and their associated antimessages were sent to annihilate

them. The members of state-queue(i) with time stamp t>6.0 are also removed and the memory they

33

occupied is reclaimed. The new state, from which we can now process the new incoming message, has

time stamp 5.5

We note that the state saving and rollback mechanisms used in the Time Warp algorithm keep all of the LP

queues state-queue(i), processedeventqueue(i) and output-event-queue(i) in chronological order

according to their time stamps, t, td, and tg respectively. This makes managing them straightforward,

permitting all operations to take the form of either popping from or pushing onto the back or front of the

respective queues.

3.5. Global Virtual Time computation
Though the Time Warp algorithm makes no specific mention of an algorithm for the Global Virtual Time

computation, it is an integral part of the fossil collection process. Most algorithms used in GVT

computation require that it be done synchronously. That is, all of the LPs need at the same point in real

time to somehow communicate their current LVT with all of the other LPs. This can then be used to

perform the fossil collection described above. This can impact system performance as each LP has to stop

what it's doing, and wait for the computation to be completed. It then needs to perform the fossil

collection. As a result, the system will periodically pause while all of this is going on. Some of the more

popular synchronous GVT computations are (Bellenot 1990), (Fabbri 1999), (Lin 1989). (Bauer 1992) and

(D'Souza 1994) both proposed somewhat different general asynchronous approaches to performing the

GVT calculation, each with their drawbacks. (Fujimoto 1997) and (Xiao 1995) describe asynchronous

methods specifically geared towards shared-memory multiprocessing systems.

We would like to make an observation about GVT, and try to relax requirements that might otherwise

constrain various methods. We first show that the GVT increases monotonically given all events eij(tg, td)

in a distributed simulation, where td>tg.

Theorem 3-3: let x, yc R, such that x!y. Then GVT(x)<GVT(y). That is, GVT increases monotonically.

Proof: Suppose otherwise. Then there exists x, ye R, such that x!y but GVT(x)>GVT(y). Then at some

time x'e [x, y) there was a rollback on some LPk such that LVTk(x')<GVT(x), or an event ekj(tg, td) was

34

generated on LPk where td<GVT(x). This second possibility can be dismissed quite simply by noting that

such a case would violate the principle that a message have a processing time stamp strictly greater than its

generation time stamp. In other words, it violates the requirement that tg<td.

Let us therefore examine the first possibility in some detail. LPk must have received from some LPj an

event ejk(tg, td) causing a rollback. Let us note that tg<td=LVTk(X')<GVT(x) for this event. Now, either LPj

generated ejk(tg, td) before, at, or after real world time x. Let us consider each of these cases separately

I. ejfk(tg, td) was generated before real world time x. Then it was delivered to LPk after real world
time x, meaning that it was a message in transit during the entire interval [x, x'). Specifically
it was in transit at time x, implying that td MT(x). From above we see td<GVT(x), and we get
GVT(x)<nmin(MT(x))<td<GVT(x) resulting in a contradiction.

II. ejk(tg, td) was generated at or after real world time x. Then we are forced to conclude that
GVT(x)>LVTk(x')=td>tg>_LVTj(x)>GVT(x), which is another contradiction.

Hence, the circumstance that GVT(x)>GVT(y) cannot ever arise. U

From here, we note that we can relax somewhat the requirements of the local estimate of the global virtual

time on each LPi without impacting the validity of the Time Warp algorithm.

Theorem 3-4: Given a collection of logical processes, LPo, LP1, ... , LPN-,, each with local virtual times

LVTo(r), LVTI(r) ... , LVTNlj (r), at some real time r, let GVTEi(r) be the local estimate of the GVT(r) on

LPI at real world time r. Then no LP will ever have an unrecoverable causality error provided that

GVTEj(r)<_GVT(r).

Proof: Since LVTi(r)>GVT(r) for i {0, 1, ... N- 1}, any eik(tg, td) generated on LPi at or after real world

time r will have td>tg>LVTi(r)>GVT(r). Now eik(tg, td) will be delivered to LPk at some real world time r+8.

But, until delivery of eik(tg,td) is actually performed, it is a message in transit and we get

td>tg>GVT(r+8)>GVTEk(r+8), allowing us to perform any necessary rollbacks on LPk. M

Corollary 3-5: If GVTEi(r)>GVT(r) for some i, r, then there is a possibility that an unrecoverable causality

error may occur. Thus, the state of the distributed simulation in such a case is invalid.

35

Proof: Let i be such that GVTEi(r)>GVT(r). Since GVT(r) is the minimum of all the local virtual times

and all messages in transit, there is either a j such that LVTj(r)<GVTEi(r) or a message in transit with time

stamp GVT(r). It is possible that either LPj, or a message in transit with time stamp less than GVTEi(r)

causes (ether directly or indirectly) a roll back to a time prior to GVTEi(r). N

An important upshot of Theorem 3-4 is that as long as no GVTEi(r) overstates the actual GVT(r) no two

GVTEi(r) values need to be the same.

One might be tempted to use these results to develop a token-passing asynchronous GVTE computation.

For instance, consider an algorithm whereby a token is passed around a ring of nodes in a distributed

simulation system. This token contains a payload allowing the receiving LPi to compute GVTEi(r). It then

adjusts the payload of the token, and passes it along to LPi+l) mod N. Each LP will have different estimates

of the GVT, and at first glance, it would appear that the hypothesis of Theorem 3-4 is satisfied. This is not

the case.

Consider the situation depicted in Figure 3-5. In this case, the GVTE(r) is based upon the state of LP's at

real world times earlier than r. It is possible that in the intervening time, some LPj could have had a

rollback to some time LVTj(r)<GVTEi(r), meaning that GVT(r)<GVTEi(r), opening the possibility of an

unrecoverable causality error.

L VTo(ri(o)) L VTO(r(2))

L VT 1 (riOi)) L VT 1(ri(2))

LVT 2(ri(2)) L VT2(ri(2))

(a) - LVT values used to (b) - Actual LVT values at
compute GVTE 2(rI(2)) time ri(2).

Figure 3-5 Possible unrecoverable causality errors in asynchronous token passing GVTE calculation

This problem is not limited only to a token ring approach, but any GVTE computation that uses data based

upon obsolete LVT values. This explains in part the popularity in synchronous approaches such as

(Bellenot 1990) and (Lin 1989). The problem with most synchronous approaches to GVT computation is

that they require processing to stop on all the nodes in the distributed simulation while the GVTE

36

computation is performed. This has the possibility of adversely impacting performance of the simulation

system.

Several asynchronous algorithms have been suggested, notably (Concepcion 1990), (Bauer 1992) and

(Mattern 1993). We will focus particular attention her upon one of these approached.

(Mattern 1993) suggested coloring LPs either white or red. A white LP sends white messages, and a red LP

sends red messages. All LPs are initially white. The approach is essentially to count the number of white

(red) message that have been sent and received while the color of all the LPs is red (white). Once the

difference between the sent and received messages is zero, a lower bound of the GVT can be calculated by

getting the minimum time stamp that occurred during the collection of white (red) messages.

Mattern provided a formal description of his algorithm as it specifically applied to ring topologies, but

provide no formal correctness proof. We suggest a more general version of Mattern's formal algorithm,

making no assumption about the simulation topology, and prove its correctness.

Table 3-2 lists the various routines that we use in the general algorithm, as well as a description of their

function. Table 3-3 lists the various data structures and a description of the data they contain. Finally,

Figure 3-6 lists a generalized variation on the original ring-topology algorithm Mattern proposed.

Routine Description
Global Min(xi) A distributed procedure to return the global minimum of all the values, x, for i<N.

This value is returned to each LPi at the completion of the call.
Global Sum(x) A distributed procedure returning the sum of all the values, xi for <N. This value is

returned to each LPj at the completion of the call.
SynchronizeO A distributed procedure to force all of the nodes in the distributed system to start at

the same point in the GVTE computation at approximately the same real world time
Reset MinA, Sets a local variable, tmi to the current LVT on the host making the call.
Get MinO Returns the minimum LVTj value that occurred since the last Reset MinO call. This

minimum is adjusted if necessary every time a rollback occurs on LP,.

Table 3-2 Routines used in the asynchronous GVTE computation

Data Structure Description
pic {red, white} This "color" is toggled between the two possible values between successive

iterations of the algorithm. Each event ek,(tg, td) takes on the color Pk at the real
world time it was generated.

sent[pj] The number of messages sent from LP with color p initialized to <0.0, 0.0>.
receivedi[p] The number of messages received by LP, with colorp , initialized to <0.0, 0.0>.

Table 3-3 Data Structures used in the asynchronous GVTE computation

37

GVTEComputationo is run on a separate execution thread on each LPi during the entire distributed

simulation run. This allows the main simulation engine to continue processing events during the GVTE

computation. Actual implementation can make some modifications to the parameters of the various loops

allowing processing to continue in the main portion of the simulation engine without occupying too much

time in this routine.

GVTEComputationO
int outstanding H Number of outstanding messages with phase p,
int old pi H Current value ofpi, prior to being incremented

SynchronizeO; H Make certain all are doing this for the same p,
while(true)

old p i <- pi /Pre-incremented value ofpi is used in the computation
Reset Min,) // Get the current simulation time.
pi <- (p,+l) mod 2 H Pass messages with this new p i.
do

outstanding <- Global Sum(senti[old pi] - received[oldp,]) H Count them
while (outstanding > 0) H Until all messages w/ phase oldgpi are received
GVTE, <-- Global Min(GetMinO)// Get the current global virtual time estimate

Figure 3-6 Asynchronous GVTE algorithm

The main portion of the simulation engine increments senti[pi] and receivedi[pi] as it sends and receives

messages with color pi, respectively. At the start of the main loop, we store the current simulation time,

retain the current value of pi in old_pi, and increment the color, pi. In the inner loop, the variable

outstanding will be non-zero until all messages with color old-pi are received. Any rollbacks on LPi to a

time less than the minimum value retained at the ResetMinO call adjust that minimum to the new, lower

LVT i value.

Theorem 3-6: During application of the algorithm in Figure 3-6, GVTEi(r)<GVT(r) for all r during which

the algorithm is in use.

Proof: When all of the messages with color old-pi are eventually received we have GetMiniO<_LVT(r) for

all i, leading to GVTEi(r)=min(GetMiniO)<_min(LVTi(r)).

38

We now need to show that the min(GetMin())<niin(MT(r)). Since all remaining messages in transit

eij(tg, td) have color Pi, they have td>tg>Get Mini(). It follows, therefore, that

min(GetMinjO)<nmin(MT(r)).

Thus min(Get Mini())<min(LVTi(r)uMT(r))=GVT(r), satisfying the hypothesis of Theorem 3-4 and

ensuring that the algorithm is correct. U

If message acknowledgement is used as part of the communications protocol, the above algorithm can be

slightly modified to explicitly wait until all messages with color oldpi have been acknowledged. This

modification would be in lieu of the summing of the senti[] and receivedi[] arrays.

39

40

Chapter 4. SODL Run-Time System Architecture

4.1. Overview
Discrete event simulations require that processes change their state in accordance with some sequence of

chronologically ordered events. In the SODL system, these changes are invoked because of receiving a

message. Each message has a time stamp dictating when in the simulation run it is to be processed. The

SODL run-time system is built to simulate a distributed simulation system to demonstrate that the language

can be used in conjunction with optimistic synchronization mechanisms.

The purpose of the SODL simulation run-time system is to ensure that messages are delivered in the proper

order to the proper simulation process. It does this through a modified version of the Time Warp algorithm

discussed in Chapter 3. Whereas the basic Time Warp algorithm aggregates a great deal of behavior into a

logical process, the implementation of the SODL run-time system disaggregates portions of the algorithm

to provide certain economies of scale, improved granularity control, and sequential mode testing.

Engine Stand

Engine 0 Engine 1 Engine N

- 7-

Figure 4-1 SODL system hierarchy

SODL has two types of user-defined objects, called constructs. Message constructs allow process

constructs to interact with each other. There are a number of other objects in the SODL run-time system

provided with the SODL distribution package. Industrious end-users may change or completely rewrite

this run-time system to meet their particular needs. The overall architecture of the SODL run time system

can be thought of in hierarchical terms. There is an engine stand, which can be thought of as distributed

simulation system for purposes of testing the SODL system. This stand contains one or more simulation

engines, each of which can be thought of as a node in a distributed simulation system. These engines act

41

independently of each other, in a manner similar to nodes in a distributed simulation. Each engine has a

number of processes it controls. This hierarchy is depicted in Figure 4-1.

4.2. Message constructs

Messages provide the means for objects within a simulated environment to communicate with each other.

SODL messages have a designated type, which may be derived from another message type (ala object

oriented inheritance). Figure 4-2 depicts the structure of message constructs.

Message Construct

Message Type Specifier

Destination List

Time stamp

Transmission flag

Identifier

Data Payload

Methods

Figure 4-2 SODL message construct

4.2.1. Message Type Specifier

Each message has an associated type. This type determines how processes receiving the message will react

to it. Since SODL aspires to be an object oriented programming language to some degree, messages can

inherit portions of their functionality from parent messages constructs. Unlike some other languages, (most

notably C++) only single inheritance is allowed. This design consideration was made primarily to simplify

implementation. Messages of type B, derived (either directly or indirectly) from some message type A, are

said to be of type A and B. This abstraction allows additional flexibility in message delivery and

processing. Routines provided in the run-time system can make use of these relationships.

4.2.2. Message destination list

The destination list is determined at run time and need not be the same for any two messages. Each

destination has a unique identifier that acts as an associative address for delivering the message. Users can

42

establish a default recipient list at compile time for a given message. They can, alternatively override or

augment the default recipients at run time.

4.2.3. Message time stamp

In order to ensure that messages are processed in the proper order, each message has a time stamp.

Messages with earlier time stamps will be processed before those with later time stamps. In cases where

two messages with the same time stamp value are encountered, the message identifier is used as a

tiebreaker. This allows all messages generated to fall into a unique ordering, regardless of the order

generated.

4.2.4. Message transmission flag

The SODL language requires that all possible outgoing messages be declared prior to compiling the source

code files. In certain cases, it may not be desirable to actually transmit all of the messages that could be

transmitted in response to an incoming message. The SODL run-time system provides programmers with a

mechanism to preempt message transmission. They can set the message transmission flag to false to

accomplish this end. The message transmission flag is set by default to true and must be either changed

directly or by overloading the function called to examine the message delivery flag. See Chapter 6 for

more details.

4.2.5. Message identifier

Each message has a unique identifier that allows it to be tracked down in the event of a revocation, and to

provide a complete ordering in the event that two messages have the same time stamp value. This identifier

has two components. The first is the index of the engine instance (see section 4.5 below) where the

message was initially generated. The second is the actual instance count of the message generated on that

engine.

4.2.6. Message data payload

The simulation developer specifies the data payload at compile time. This payload is analogous to the data

members in a traditional object oriented programming language.

43

4.2.7. Message methods

Methods are analogous to the methods found in object oriented programming languages. They are intended

to act on the data members of the particular message instance to which they are associated.

4.3. Process constructs

Process Construct

Time stamp

Identifier

State Data

Methods mesgtye

Mode
construct

m pess c r . p c
m essage type,

message thee arTransmit/Receive Node (0,0) oa

n ne TransmiLReceive Node (0, o) S messageti
message type sen

a
a sa co e t oTransm it/Receive Node a n e m essage s t ype3

mplii types Mode s message type4

Transmitecve Nod,)
Transmit/Receive Node (1, 1)

. message type,,

Transmit/Receive Node (1,ni) '

Figure 4-3 SODL process construct

From the programmer's perspective, all of the functionality associated with a logical is encapsulated into a

SODL process construct. Each process can send messages and change its internal state upon the receipt of

a message. There are enhancements allowing certain tasks to be performed somewhat easier, namely the

notion of a process mode. Figure 4-3 shows the basic structure of a SODL process. This particular

example shows a process with two modes, but in can in general have any number of them. Each mode has

a collection of transmit/receive nodes. Each of these nodes accepts one message of a stated type (which

implicitly includes all derived types), changes the internal state data when it receives a message, and

44

produces output messages. There is no linguistic limit to the number of modes, the number of nodes in

each mode, nor to the number of output messages a node can transmit8.

It might seem a little odd that node (1, n1) receives both messages of type 1 and 2., while node (0, 1) can

only handle messages of type 1. Messages are declared as types that can inherit data and methods from a

parent message. If message type 1 is a parent message of type 2, and if node (1, n1) is intended to receive

messages of type 1, then technically, any message of type 2 is also a message of type 1, and node (1, n1)

can process it.

4.3.1. Process time stamp

Each process instance has a time stamp associated with it. This time stamp is changed to the time of the

message that is currently being processed. The process controller (see Section 4.4) uses the process time

stamp to facilitate state saving and recovery.

4.3.2. Process identifier

Each process has associated with it a unique identifier. This identifier is a pair of numbers that correspond

to the process's owning SODL engine (See section 4.5) and an index for distinguishing between all of the

processes the parent engine controls.

4.3.3. Process state data

State data is analogous to the member data found in an object oriented class definition. This state data has

an associated time stamp. The process is said to have the state of its data elements at the time of its time

stamp. Changes to the state data are considered instantaneous. This leads to the situation where a state

may not be completely up to date if messages with the process's current time stamp are still pending.

Though the order of message delivery is the same from run to run of the simulation, for practical purposes

developers should not rely on any particular processing order for messages with identical time stamps.

State data should not contain references, since the C++ standard has trouble copying objects with them if

the copy constructor is not explicitly defined. Pointers can be used, but doing so should be done carefully.

8 Any limitations stem from the architecture and capabilities of the machine running the simulation.

45

Since the pointer value is copied in a copy constructor, and not the data that is being pointed to, great care

must be taken to ensure that the state of the data being pointed to is consistent, and can be rolled back if it

is dynamic in nature. SODL provides callbacks allowing developers to perform some processing in the

event of a rollback and during fossil collection so that, among other things, data in a pointer may be

corrected and processed if necessary.

4.3.4. Process methods

Methods can be used to perform calculations or modify internal process state data. The SODL engine hides

references to other processes, so these methods cannot generally be called on other process instances, even

instance of the same type.

4.3.5. Process modes

Modes can be thought of as a collection of transmit/receive nodes (described in section 4.3.6) and can be

activated or deactivated independently of each other. Only nodes in active modes can receive messages.

At startup, all of the modes are active. Each process receives a bootstrapping message that can be used to

deactivate modes that are intended to be dormant at the start of the simulation. Alternatively, prior to

actually sending a message to a process, an initialization method is called in each process instance that can

also be used to deactivate desired modes. This is discussed in more detail in Chapter 6.

4.3.6. Process nodes

Each mode can have a collection of subordinate nodes. Each of these nodes handles exactly one type of

input message, including any messages derived of that type. The node is directly responsible for

processing the message, ensuring that proper updates to the process state are made, and that the data fields

in any outgoing messages contain the proper values. Input messages are passed into the node by value,

instead of by reference. Output messages are passed by reference. The reason for this is that input

messages may be used by other processes, or by the very process currently handling the message. This also

hides data fields from derived message types. Output messages are passed by reference so that they may

retain any changes to them the node may make.

46

4.3.7. Process inheritance

Like messages, process can singly inherit behavior from parent process constructs. There are some

intricacies associated with this practice that make this somewhat more complicated than inheritance in the

traditional object-oriented sense. Inheritance of the process methods and data members is like that in C++.

Modes and nodes are a little different, though. Specifically, modes with the same name across an

inheritance are actually the same mode instance. That is, if process A had a mode M, and a process B

derived from process A also has a mode M, then these are the same mode in each instance. M can be

activated or deactivated within the context of either A or B, affecting its activity state in both contexts.

Nodes also need to have their behavior defined more clearly, since there is no analogous feature in other

object-oriented programming languages. Mainly, any nodes in active modes can have process messages of

their input type. Overloading a node in a derived process construct will not prevent the message from

being delivered to the parent's context. For instance, in the example above, assume that M has a node

named N in both processes A and B. In this case node N in both A and B will process the message. The

programmer does not explicitly pass the message to the parent class; the run-time system will do this

implicitly. The reason for this is that, even though the name of the node may be the same, the output

messages may differ, and for ease of implementation, this approach was implemented.

4.3.8. Fossil collection in the process instance

When the process controller performs fossil collection, it is safe to produce any output that may be pending

for the state at its designated time stamp. SODL provides the ability for developers to overload the

fossilCollect method; all output should be performed in this method. The remaining SODL run-time

system ensures that fossil collection occurs in the proper process order, so that output appears in its proper

sequence as well.

4.4. Process Controllers
A process controller manages many of the Time Warp specific functions associated with each process.

Process controllers ensure that the state is saved prior to processing messages that will change the time

47

stamp of the process it controls, and when directed to do so, performs fossil collection and rollbacks. It

also acts as a conduit for sending messages to and from its process. Figure 4-4 shows the general structure

of a process controller and how it receives and transmits messages to and from the process.

4.4.1. Identifier

Each process has a unique identifier, which we discussed in section 4.3. The process controller has an

identifier with a little additional information, including typing data that makes possible screening inbound

messages from only specific types of messages.

Process Controller

Identifier

State Queue Output Message,,

process state(t.) Output Message,

process state(t._I)
Input Message c -- Output Message,

=, process state(t._,) a

" Output Message3

front

Figure 4-4 Process Controller message flow

4.4.2. State queue

The state queue holds the process states for specific points in time. The back element of the state queue is

called the current state. Due to the Time Warp algorithm as implemented in the SODL system, the process

states are in descending order of their time stamp value from the current state at the back and earlier states

toward the front. States are saved onto the back of the queue, and they can be removed either from the

back of the queue (in the case of a rollback) or from the front (during fossil collection).

4.4.3. Process controller message receiver

Upon receipt of a message delivery to the process controller, the time stamp of that message is compared

with that of the back element. There are three cases, with which to contend:

48

1. Time stamp of incoming message < Time stamp of current state: It should not normally
happen that a message is received with an earlier time stamp than the current state.

II. Time stamp of incoming message > Time stamp of current state: Create a new current
state by copying the old one onto the back of the state queue and changing its time stamp
value to that of the incoming message. The new back element is now the new current state.
The process controller also registers a fossil collection event with the controlling engine so
that this new state can be reclaimed later. We now deal with the message as if it has the same
time stamp as the current state, in case III below.

III. Time stamp of incoming message = Time stamp of current state: The message is passed to
the current state, which can make modifications to its internal data and generate outgoing
messages.

4.4.4. Process controller message transmitter

Requests for message transmission originate in the process instance associated with the controller. Output

messages are preprocessed and screened. The process controller will examine each output message and

reject transmission of any that have their transmission flag set to false or any that have an empty destination

list. Also, since we requires output messages from a node to have a greater time stamp value than their

current time stamp, each outgoing message time stamp is set to a value slightly greater than the current time

stamp if this condition is not satisfied.

4.4.5. Rollback

The SODL engine managing the process controller may periodically direct a rollback to a time t. All states

saved in the state queue that have a time stamp not earlier than t are removed from the state queue. Since

they have been placed into the queue in ascending order of their time stamps, this is simply a matter or

removing the back element from the queue until the queue's back element has a time stamp strictly less

than t. There is no easy way to revoke the fossil collection scheduled for this rollback, so when we are

notified that one must take place for any rolled back states, the request is ignored.

4.4.6. Fossil collection

Some intricacies associated with fossil collection bear mentioning. First, in order to perform a rollback to a

time t, a state with time stamp prior to time t must remain. That is, we must always have a state remaining

that is prior to the current GVT. Secondly, since we are performing operations such as output during the

fossil collection phase, we need to ensure that we also perform this output in time stamp order. These

49

considerations led to an arrangement whereby fossil collection was conducted in two phases. Each fossil

collection event the process controller performs has an associated time stamp, which is the time stamp of

the process state that is obliged to perform some form of output. Any states with earlier time stamps have

their memory reclaimed, but the one that performs the output is retained until the next cycle of fossil

collection for that process controller. This is depicted in figure 4-5.

State Queue State Queue State Queue

back back back

S(t ,,,+)S(t ,_,+)] SO t,,,.+ 2)

S(t......I) S(t ... Output - S(-+)

S(1t11,,,) Output - S(t

front front front

Prior to fossil After first round of After second round
collection fossil collection of fossil collection

Figure 4-5 Fossil collection cycle in a SODL process controller

This approach allows the fossil collection to be conducted in a manner consistent with SODL system

requirements. By performing the output at the designated fossil collection time, we guarantee that the

output is produced in the proper time stamp order. By retaining the state that had just produced the output

until the next fossil collection round, we provide for the possibility of rolling back to that state.

4.5. Engines

Engines aggregate multiple processes and provide some improvements in memory management and

granularity control over the way a simulation run. All messages addressed to a particular process are

passed first to the engine controlling that process and placed in an event queue for scheduling. The engines

also retain sodi:.AntiMessage instances for all messages that have been produced in subordinate processes

so that those messages can be rolled back in the event that becomes necessary. The engine structure is

depicted in Figure 4-6. All processes in an engine are considered to have the same time stamp value,

though in practice this need not occur. This time stamp value is that of the current message being

50

processed or, if no message is being processed, the time stamp value of the last processed message. Upon

receipt of a message from another engine with a time stamp that is less than the current engine time stamp,

a rollback to the new message time stamp is required of all subordinate process controllers.

SODL Engine

Fossil Collection Schedule

fossl
Engine fosslf,
Clock

ir
Pending Message Queue Process Controllers

'message,,, processo

message ,,~,prcess,

Antimessage Queue Processed Messages Output Messages

antimessage messagen.2 antimessage+

antimessage,+ age,,,-, antimessageq+r

Figure 4-6 SODL engine structure

Each engine has an associated node number. This node number is unique among all of the other engines

that may be in a SODL system. This number corresponds to the first part of the identifier for processes

controlled on the engine, and of messages originating on the engine.

51

4.5.1. Local clock

The clock provides a convenient central way of checking the current simulation engine time stamp, and

determining the time stamp of outgoing messages, should the user-defined portion fail to provide an

adequate value. Earlier implementations of the clock had a real-time mode that allowed messages

processing to occur at some rate proportional to the real world flow of time. This was found to be an

unnecessary feature, though the general capability remains if developers wish to restore this capability.

4.5.2. Pending message queue (event queue)

The pending message queue prioritizes pending messages so that the next message in the queue has the

lowest time stamp value of any others in the queue. For that reason, this is implemented as a standard

library priority-queue (Josuttis 1999).

4.5.3. Antimessage queue

The antimessage queue stores antimessages are associated with messages in the pending message queue.

The order restrictions on the two queues are identical, so if a message has been revoked, it can be checked

with the top element of the antimessage queue when it is considered for delivery to its destinations. If the

antimessage annihilates the message, both are removed from their respective queues and destroyed.

4.5.4. Processed message queue

Each message is inserted into the back of the processed message queue after the engine has processed it. In

the event of a rollback, elements from the back of the processed message queue can be removed and

reinserted into the pending message queue as necessary. During fossil collection, messages can be

reclaimed from the front of the message queue. The messages in the processed message queue are ordered

by their time stamp value.

4.5.5. Output message queue

During message transmission, a copy of the outgoing message's associated antimessage is retained in the

event that a rollback is necessary. These messages, unlike those in the processed message queue, are not

ordered by their time stamp values, but by the time stamp of the process state that created them (i.e. their

52

creation time). The reason for this distinction is that during a rollback, any messages that need to be

revoked are done so because the process that created them became invalid. We are not interested in the

delivery time, but in revoking them because since they never should have been created in the first place.

Thus, they are inserted into the output message queue in the order of their creation. During rollback, the

antimessages are removed from the back of the queue and transmitted. During fossil collection, they are

removed from the front and their memory reclaimed.

4.5.6. Process controller array

Each engine has a collection of processes it owns. Each of these processes has its process controller. The

engine does not actually have any direct manipulation of the processes themselves, but can interact with the

process controllers. Pointers to these controllers are stored in a standard library vector. Each process can

be uniquely addressed by a pair of numbers, the index of its owning engine, and the index in the vector that

has the pointer to the process controller. This is in fact the basis for the identifier in the process controllers

and their processes.

4.5.7. Fossil collection schedule

The engine needs to keep track of any new states that have been created by the owned process controllers

so that when fossil collection occurs, those states can be reclaimed in a chronologically correct sequence,

ensuring proper formatting of the output. A fossil collection schedule is implemented as a priority-queue

that has the earliest scheduled fossil collection event at the top.

4.5.8. Engine message receiver

Messages destined for a process controlled on some engine must first be passed to the engine's receiver. If

the incoming message has a time stamp t,, less than the current clock time stamp t,, then the engine initiates

a rollback to the message time stamp. If the incoming message is an antimessage, it is inserted into the

antimessage queue; otherwise it is placed in the pending message queue.

53

4.5.9. Engine message transmitter

Any of the process controllers owned by an engine can request a message to be transmitted. The engine

does not consider the destination of the message at this point, but blindly forwards the message to the

engine stand (see section 4.6 below) for the local node in the distributed simulation for delivery to the

proper engines. An antimessage for the outgoing message is retained in the event a rollback requires its

revocation.

4.5.10. Engine advancement

Periodically, the engine stand will instruct each engine it controls to process a message. When this occurs,

the engine removes from the top of the pending message queue the first message that does not have an

antimessage waiting for it in the antimessage queue. All message-antimessage pairs are removed and

eliminated. The message is then sent to the controllers for all of the destination processes the engine owns.

Once that is completed, the message is then inserted in the back of the processed message queue in case it

needs to be reinserted into the event queue due to a rollback.

4.5.11. Rollback

An engine rollback is performed any time it receives an incoming message with a time stamp tr less than

the time of the local clock. When this occurs, each process controller the engine owns performs its

rollback, as described in section 4.4.5. The engine must also rollback portions of its data structure as well.

This is accomplished by reinserting into the pending message queue all of the messages in the processed

message queue with time stamps less than or equal to tr. Any antimessages in the output message queue

with time stamps less than or equal to tr are transmitted so that their associated messages can be revoked as

well.

The fossil collection schedule remains unchanged. It is difficult and time consuming to weed out fossil

collection events made irrelevant because of the rollback. When they are processed, the process controller

can easily recognize that they have been the result of a rollback, and they are ignored.

54

4.5.12. Fossil collection

Fossil collection is broken into two phases, known as incremental fossil collection and gross fossil

collection.

4.5.12.1. Incremental fossil collection

Incremental fossil collection is geared primarily towards the process controllers. The engine stand during

the overall fossil collection process will query the engine as to the time of the event in the fossil collection

schedule. When certain conditions are satisfied (see Section 4.6) the engine will be allowed to perform an

incremental fossil collection, allowing the process state with the lowest time stamp value remaining to be

fossil collected (see section 4.4). This will ensure that from the engine's perspective all of the output

governed by the engine is generated in the proper order.

4.5.12.2. Gross fossil collection

Gross fossil collection takes place after incremental fossil collection at the direction of the engine stand,

and is for reclaiming all of the engine's data with a time stamp value less than some tf. Any messages in

the processed message queue or the output message queue with time stamps earlier than tf are removed

from the backs of their respective queues, and their resources are reclaimed.

4.6. Engine Stand

Engine Stand

Message Forwarder GVT Estimator

iO 4 Engine List

Engine 0

L l N Engine 1

Figure 4-7 Engine stand structure

55

Each node in the distributed simulation has a unique engine stand, depicted in Figure 4-7, which acts as the

primary controller for all of the engines managed on that node. It was introduced primarily as a means to

implement the Time Warp algorithm without introducing problems associated with actually distributing the

system. It proved useful in this regard in tracking down errors within the implementation of Time Warp in

the SODL system.

It is retained because its value does extend beyond simply debugging purposes in SODL system

development. Specifically, it provides a mechanism for testing and optimizing possible distributions of

processes across engines, while keeping at bay network errors that might occur specifically in a fully

distributed implementation.

4.6.1. Idle listener interface

The idle listener interface provides a mechanism for the view manager (see section 4.8) to control the

engine stand. This control comes in two forms. The first is a request to perform any initialization required

to get the simulation correctly configured for startup. This can include establishing initial bootstrapping

messages, and process state initialization. The second form of control allows the engine stand to progress

in the simulation. This is actually implemented by allowing each of the engines under control of the engine

stand to advance. The view manager is notified if no pending messages remain so that it can end the

simulation run, if that is its behavior.

4.6.2. Engine List

The engine list contains a reference to all of the engines in the simulation. Only certain engines are

actually controlled by the engine stand that owns it in a distributed simulation. This provides an easy

method of making certain that process instantiation is done consistently across the distributed simulation.

4.6.3. Message forwarder

The message forwarder sends and receives messages between engine instances. All messages are

forwarded from the simulation engine to the sodl::EngineStand::stand instance. From there, the

56

distribution list is queried, and copies of the message are sent to each of the sodl::Engine instances with

processes listed as recipients.

4.6.4. Local virtual time (LVT) calculator

The LVT calculator keeps track of messages that have been processed and acknowledgements of messages

transmitted to other engine stands. It then keeps track of the local virtual time for them engine stand, as

defined in Chapter 3.

4.6.5. Global virtual time (GVT) estimator

The GVT estimator receives periodic requests for input into a global virtual time calculation. The GVT

calculator gets the current LVT from the LVT calculator, and passes that on to the message forwarder to be

provided for the GVT computation. At the end of the GVT computation, each engine stand receives the

newly estimated GVT and passes it from the message forwarder to the GVT estimator. The GVT estimator

updates the local estimate of the GVT, and conducts fossil collection.

4.6.6. Fossil collection

As in the engines, engine stand fossil collection is conducted in two phases. Upon an update of the local

estimate of the GVT, incremental fossil collection is performed, followed by gross fossil collection.

4.6.6.1. Incremental fossil collection

The incremental fossil collection involves polling all of the locally controlled engines for their next

scheduled fossil collection event. These are sorted and processed in time stamp order up to the GVT.

Upon completion of an incremental fossil collection event on engine e, the engine stand again polls e for its

next fossil collection event. In this way, all of the fossil collection events prior to the GVT are performed

in proper time stamp order on all the engines the stand controls.

4.6.6.2. Gross fossil collection

After completion of the incremental fossil collection up to the new local estimate of the GVT, each engine

the stand controls is given the opportunity to perform gross fossil collection to reclaim memory occupied

by obsolete data directly under the control of the engine instance.

57

4.7. Message Passing Interface (MPI)
The SODL run-time system was intended to work with the Message Passing Interface (MPI), a standard

library linkable with C, C++, and Fortran programs (Gropp 1998, 1999a, 199b). It is primarily used in

general distributed programming, not specifically distributed simulation. However, certain features make it

a useful tool in distributed simulation:

* It has a standard to which all implementations must adhere. It has also been widely used for other
purposes, meaning that most implementations are reasonably mature and stable.

* It remotely starts up all of the nodes in the distributed simulation with the need for the simulation
operator to do this manually.

" It has been ported to multiple platforms. In particular, it can operate heterogeneously with a
variety of Unix platforms. It has also been ported to Microsoft Windows NT, but it does not
interoperate with MPI on Unix platforms.

* Since the library has been ported to multiple platforms SODL run-time systems using MPI can
easily be ported to those platforms with little or no code changes.

This aspect of the simulation system was not implemented prior to this writing, though it is hoped that

derived work will establish a fully distributed implementation of the SODL run-time system using MPI for

network communication.

4.8. View manager
The View Manager is a configurable subsystem that is designed to facilitate graphical output from a

standard API. It controls exactly one sodl::IdleListener instance (of which sodl::EngineStand is a

subtype). View managers have a start method that, when called starts the simulation running. This

includes initializing the idle listener (which in turn initializes all of the simulation components) and

incrementally stepping the simulation (by processing some non-zero number of pending events). SODL

comes with two view managers, though developers can easily write new ones to work with API's not

currently supported.

4.8.1. Text view manager

The Text view manager provides no graphics support. It is intended for producing output only to stdout or

log files. Upon starting the view manager, it immediately calls the initialization routine in the idle listener.

58

It then calls the idle method in the idle listener until no messages remain in the simulation system to be

processed. When that happens, the text view manager returns control to main.

4.8.2. GLUT view manager

The GLUT view manager provides a basic interface with the GL User Toolkit (GLUT) API. During

initialization, any simulation objects that own a gvm::View instance registers it with the controlling GLUT

view manager. Any user input events are then forwarded to the appropriate view. Multiple views can be

added to the GLUT view manager, and it will ensure that the user inputs are sent to the proper display

controller. GLUT provides a mechanism whereby during idle times in the graphics subsystem, a callback

can be made to a static method. This mechanism is used to allow the simulation to process some pending

events.

The GLUT view manager requires extensive additional support in the form of SODL processes and

messages in order for developers to make use of it. This interface is described in more detail in Chapter 9.

To summarize, there is a SODL process associated with each graphics object under the management of a

GLUT view manager. These views may be distributed across a network, or they may be consolidated on

one host machine. Inside each view is a scene graph that corresponds to the hierarchy of graphics

processes in the distributed simulation. Messages can be sent to these SODL processes causing some state

change in the receiving process. These changes are then forwarded to all of the views that have elements in

their scene graph associated with the process. Upon receipt of these messages, the view generates a

message and places it into a queue for processing during the fossil collection phase. It is only at the fossil

collection phase that these changes to the scene graph are actually committed.

59

60

Chapter 5. SODL Parser Usage

5.1. Overview

The SODL parser is a software tool that translates SODL construct files into a collection of C++ source

code files. It also creates a makefile for compiling the generated C++ source code. This makefile is

intended for use with GNU make 3.79. Generated C++ source code files can be compiled using the GNU

C++ Compiler (GCC version 2.95,2).

5.1.1. Cautionary notes

Programmers developing under Win32 operating systems will need to obtain a copy of the GNU make

utility (version 3.79 or later). They are strongly advised to obtain the latest version of Cygwin (available at

http://sources.redhat.com/cygwin/) and use that as a development environment. I personally recommend

Emacs for Win32 (which is available at http://www.gnu.org/software/emacs/windows/).

In the event that a distributed simulation system is eventually produced with MPI, SODL will be restricted

to running in a distributed mode under Unix systems until a robust version of MPI is produced to work in

the Cygwin environment; as of this writing, there is no such implementation.

5.2. Installation

The parser is distributed as a tarred and bzipped source code with a variety of makefiles that can be used to

build the parser for a variety of platforms. The makefile may be edited to direct the executable build to a

specific location if the default settings are not satisfactory. Currently the following platforms are supported

(though if I've been a good programmer, others should be equally well supported without major changes to

the parser source code):

Platform (Compiler) Makefile name Build command line
Cygwin (GCC) src/Makefile.Cygwin make cyg
Linux (GCC) src/Makefile.linux make lnx
Solaris (GCC) src/Makefile.solaris make sol

Table 5-1 Methods for making the SODL parser

Installation and compilation instructions are in Figure 5-1.

61

1) Download the latest version of the software and copy it to a desired location.

2) tar -xvjf sodl-x.x.xxx.tar.bz2 where x.x.xxx is the version number of the
SODL distribution. If your version of tar does not support this form of decompression, use

bunzip2 sodl-x.x.xxx.tar.bz2
tar -xvf sodl-x.x.xxx.tar

3) cd sodl-x.x.xxx

4) make platform-abbreviation

5) make clean

Figure 5-1 SODL Parser (sp) installation instructions

5.3. Directory Structure
There are some makefiles available to perform various tasks for managing the contents of the directory

structure.

Makefile command Function
Make build Builds SODL parser and sample programs; the default platform is Cygwin.
Make clean Removes garbage files created during the build process.
Make fullclean Removes garbage files and executables created during the build process.

Table 5-2 Makefile commands

Upon extraction, the there will be a number of directories along with the make files to build the executable.

5.3.1. ./bin

The executable is placed in this location after it is built. Add this to your path or move sp to a place in your

path.

5.3.2. ./config

Contains configuration files for various platform and option combinations. The platforms are those listed

above, and the options involve the view manager and whether or not the simulation is to run in a distributed

mode.

62

5.3.3. ./doc

Some HTML-formatted documentation is available here. It is largely portions of this dissertation converted

to HTML for portability.

5.3.4. ./object

Object files generated during the build process are places here. They can conveniently be removed by

using the "make clean" after building is complete.

5.3.5. ./sample
Directory Contents

./sample/xxx/bin Location of the binary executable after the build is complete

./sample/xxx/build Location of the C++ files generated by the SODL parser

./sample/xxx/object Location of the object files generated by the compiler during the build process
./sample/xxx/plan Location of the SODL source files which are used to generate the simulation

Table 5-3 Sample simulation system directory structure

Make command line What it builds
make all samples
make glut battle, bounce 1, bounce2, brigade 1, hierarchy
make text brigade2, ping, ring I, ring2, simple 1, simple2, simple3
make dist relayl, relay2, relay3, relay4, relay5, relay6
make battle battle
make bounce 1 bounce 1
make bounce2 bounce2
make brigade 1 brigade 1
make brigade2 brigade2
make ping ping
make relayl relayl
make relay2 relay2
make relay3 relay3
make relay4 relay4
make relay5 relay5
make relay6 relay6
make ring I ringl
make ring2 ring2
make simplel simplel
make simple2 simple2
make simple3 simple3

Table 5-4 Make command line arguments for building demonstrations

The sample directory contains a number of SODL sample programs and a collection configuration files for

various platform/option combinations. It includes the makefiles needed to manage the subdirectory

contents. Each demonstration directory has a number of subdirectories that are used to build the samples.

63

These directories are described in table 5-3. Table 5-4 describes the shows the command line make

arguments for build some or all of the demonstrations.

The next few sections provide brief descriptions of each of the demonstrations. They are more fully

described in Chapter 9.

5.3.5.1. .Isample/battle

The battle demonstration is an autonomous tank battle simulator. Two opposing forces each with 25 tanks

and 1 command post start out in some initial configuration and attempt to destroy the opposing force's

command post.

5.3.5.2. ./samplelbouncel

The bouncel demo simulates a collisionless system of particles in a closed container. It uses the GLUT

view manager to display the simulation state.

5.3.5.3. .samplelbounce2

This appears essentially the same thing as bouncel above, but it is done with fewer messages

5.3.5.4. ./samplelbrigadel

This is another GLUT view manager demonstrator that shows the progress of a military brigade performing

some task. It also performs a great deal of output to stdout indicating which components are doing what.

5.3.5.5. .samplelbrigade2

This simulates the same thing as the brigadel demonstration above, but without the GLUT view manager.

It produces only textual output.

5.3.5.6. ./samplelhierarchy

Hierarchy is a single process GLUT view manager demonstration. Its notion is somewhat similar to the

brigade demonstrations, but it does things in an apparently more orderly manner.

64

5.3.5.7. .Isamplelping

Ping simulates a token being bounced between two processes. It produces only textual output.

5.3.5.8. ./sample/relayl

Relay sets up a multi-engine simulation with two processes. One transmits a token to the other, which is

then repeatedly bounced between them until the user stops the simulation. It was intended to act as a

simple test of multiple engines without the possibility of a rollback ever occurring.

5.3.5.9. ./sample/relay2

This simulation is intended as a stress test of the rollback mechanism in the SODL run time system. For

every message delivered, two are generated, so this simulation will eventually run out of memory and cause

an abnormal termination. Each process resides on different engines and, upon receipt of a message

transmits two messages, one to itself, the other to the partner process. Each of these messages has a

random time stamp, which may cause a rollback to occur on the other.

5.3.5.10. ./samplelrelay3

This simulation system is also intended to stress test the rollback mechanism and memory management of

the SODL system. One controller process owns 1000 subordinate processes distributed 10 each on 100

engines. At startup, the controlling process sends a message to all of the subordinate processes. Upon

receipt of such a message, each of these subordinates sends a message to a random subordinate at a random

time.

5.3.5.11. ./samplelrelay4

This simulation consists of a controller process, two subscription processes, and four child processes. The

child processes each reside on their own engine. Each child subscribes to one of the two subscriptions

processes. Messages sent to a subscription process are forwarded to all of its subscribers. The simulation

starts when the controller sends a message to each of the subscriptions. That message is then forwarded to

all of the children processes. Upon receipt of a message from the subscription, each child process sends a

message to a random subscription, a message to unsubscribe from a random subscription, and a message to

65

subscribe to a random subscription. Each of these messages has a random time stamp. Like relay2 above,

this normally will create more messages each cycle than are consumed, and it therefore will eventually

terminate abnormally due to lack of memory.

5.3.5.12. ./sample/relay5

Relay5 has three processes, a source, a relay, and a sink. Each process resides on a different engine.

Messages periodically originate in the source and are sent to the relay. The relay forwards a message to the

sink, which sends no messages.

5.3.5.13. .samplelrelay6

Relay6 is another test of the rollback mechanism. There are two processes on different engines, one

process makes fast progress, and the other makes slower progress but at specific points in time, sends a

message to the faster. This causes rollbacks to occur at predictable points in simulation time.

5.3.5.14. .samplelringl

This demonstration has a controller and ten ring elements arranged in a ring topology. Upon receipt of a

message, each ring member transmits a message to the next member in the ring. The simulation is started

when the controller sends a message to the first element in the ring. The ring topology is actually glued

together with a subscription similar to that described in relay4.

5.3.5.15. .samplelring2

This behaves much the same way as ringl above, except that when started, the controller broadcasts a

message to all of the child processes. This results in each process processing messages in parallel (from a

virtual time perspective) rather than sequentially as in ring 1.

5.3.5.16. ./sample/simplel

This is a simple test of a single process that sends a message to itself upon receipt of one. It does this 100

times before stopping.

66

5.3.5.17. .Isample/simple2

This behaves like simple 1, except that it does not stop. It was used to check for memory leaks in the main

simulation engine.

5.3.5.18. .sample/simple3

Simple3 behaves like the ping demonstration mentioned earlier, except that the messages between the two

processes stop only when the user terminates the program.

5.3.6. .src

This directory contains the source code required to build the SODL parser.

5.3.7. ./template

This directory contains the source code for the SODL run-time system. This includes a number of SODL

construct files for the GLUT view manager, and, in the ./template/gvm subdirectory, the actual graphics

engine that the GLUT view manager uses for graphics display.

5.4. Command Line Options
Once the parser is installed, you can run it by entering 'sp' followed by a collection of flag values and the

root process name.

sp [-abaseDir] [-bbinSubdir] [-ccfgDir] [-ddisplay] [-ibldSubdir] [-lplatform] [-mmode]
[-oobjSubdir] [-pplnSubdir] [-ttmpltDir] [-v] RootProcess

Option Meaning [Default Value]
-a Specify base directory for the others below [./
-b Specify the binary subdirectory, where the executable will be generated [bin!]
-c Specify configuration file subdirectory [$(SODLHOME)/config/]
-d Specify either 'Text' or 'GLUT' display type [Text]
-i Specify intermediate build subdirectory [build]
-1 Specify platform name [platform used in building the parser]
-m Specify simulation mode, either 'single' or 'dist' [single]
-o Specify object file subdirectory [object/]

p Specify plan file subdirectory [plan!]
-t Specify template location [($SODLHOME)/template/]
-v Turns verbose mode ON [OFF]

Table 5-5 Command line options for sp

67

All subdirectories except tmpltDir and cfgDir are relative to baseDir. RootProcess is expected to be a

process construct file in the planSubdir directory (relative to the baseDir value).

For user projects, the default directory structure is illustrated in Figure 5-2.

IbaseDir I

I I I I

binSubdir buildSubdirl I objSubdirI IplnSubdirI

Figure 5-2 User project default directory structure

5.5. Configuration Files

The SODL parser uses a configuration file to specify various parameters for building the final product.

These configuration files will differ from each other based upon the platform and compiler in use. The

location of the configuration file defaults to $(SODLHOME)/config. Users can specify their own

configuration file location using the -c option in the parser's command line invocation. The actual file

name that the parser will look for in that directory is mode.display.platform where the -m option specifies

the mode value, -d specifies the display component, and -1 specifies the platform. Some examples are

shown in Table 5-6.

Command Line Configuration file used
sp -lcygwin ... $(SODLHOME)/config/single.text.cygwin
.sp -ctemp -llinux -dglut/temp/single.glut.linux
sp -mdist -lcygwin -dtext ... $(SODLHOME)/foo/single.text.cygwin

Table 5-6 Configuration file specification in the sp command line

This mechanism enables end user to specify their own graphics library and user interface, should they

(perhaps wisely) opt out of the rather limited one provided with the SODL system. It also provides the

means by which an end user can write their own simulation engine with which the code sp produces would

interface.

The configuration files have key/value pairings that the parser and code generator can use to produce

proper Makefiles. Here is a list of the keys and a description of how their values are used. These pairings

take on the form key-name = "key-value".

68

Table 5-7 describes the key/value pair settings available to users to specify how the eventual product is

built. Figure 5-3 has examples of some configuration files distributed with the SODL system.

When sp is run, it produces a number of files. There are several C++ source code files written to the

directory specified -o option in the sp command line. There is also a Makefile written to baseDir used to

actually build an executable simulation. A typical build will have one call to sp to produce the C++ files

and the Makefile, followed by a 'make' to produce the final executable.

Key Name Value Meaning
Location of the executable (relative to baseDir) produced as a result of complete SODL
build process.(same as the -b option in the sp command line)

Directory (relative to baseDir) to write the C++ files the SODL parser produces (same as
BUILD -i in sp command line).

CC Compiler command line invocation to use to compile C++ files.
Command line flags for the compiler. It is required to have as its last argument the
option for naming the output file.

DISPLAY Display type (same as -d option in SODL parser command line)
EXEEXT Specifies the file extension for the executable image (required for Win32 to be .exe)
LD Linker command line invocation to use to link the object files.

Linker command line options and flags. It is required to have as its last option the flag
for naming the output file.

MODE Simulation mode (same as the -m option in the SODL parser command line)
OBJECT Directory in which the compiler places the object files after compilation (same as -o in

SODL parser command line).
OBJEXT File extension for the object files. It is normally ".o"
PLAN Directory (relative to baseDir) where the root process declaration is located (same as -p

in SODL parser command line).
REMOVE Command for removing files (rm for Unix shells, del for MS-DOS like command shells)
TEMPLATE Directory (relative to baseDir) where the SODL simulation engine and support source

files are located (same as -t in SODL parser command line).

Table 5-7 Configuration file key/value descriptions

69

OI3JEXT=.0
EXEEXT
cc =11+1

LD = l+f
CCFLAGS = " -DL1NUX -ftemplate-depth-64 -c -/usr/include -02 -0o

LDFLAGS = "-L/usr/Xl 1R6/Iib -Iglut -lMesaGLU -lMesaGL -IXext -IXI 1 -Im -IXi -LXmu -o"
REMOVE = "rm -f"

a - S(SODLHOME)/config/dist.GLUT.Iinux

OBJEXT = "0o"
EXEEXT ...

cc = v+I

LD =i +I
CCFLAGS = "-DLINIJX -ftemplate-depth-64 -02 -c -o"
LDFLAGS ="-o0"
REMOVE = "rm -f"

b - $(SODLHOME)/configfdist.Text.linux

OBJEXT=" .o"
EXCEEXT
cc = W +I

LD =1 +1
CCFLAGS = "-DLII4UX -ftemplate-depth-64 -Ilusr/include -02 -c -o"
LDFLAGS = "-L/usr!X1 1R6/lib -iglut -1MesaGLU -iMesaUL -IXext -lxi I -Im -IXi -l~mu -o"
REMOVE = "rm -f"

c - $(SODLHOME)/config/single.GLUT.Iinux

OBJEXT=" .o"
EX.EEXT=
CC = f+V

LD = i +1

CCFLAGS = "-DL1NUX -ftemplate-depth-64 -02 -c -o"
LDFLAGS ="-o "
REMOVE = "rm -f"

d - $(SODLHOME)/config/single.Text.Iinux

Figure 5-3 SODL configuration files for Linux platform

70

Chapter 6. SODL Language Structure

6.1. Overview

The Simulation Object Description Language (SODL) is designed to provide an enhanced event driven

response representation for controlling entity activity in distributed discrete event simulations. It is a

purely event driven language, and has some features of more traditional object oriented languages such as

inheritance. SODL object descriptions are represented as a collection of stimulus/response handlers. That

is, upon receipt of some stimulus, a simulation object will produce a possibly empty collection of internal

and external responses to that stimulus. Here, stimuli are incoming messages, internal responses are state

changes, and external responses are outgoing messages, as depicted in figure 6-1.

Outbound Message 0

Outbound Message I

Inbound Message Simulationprcs

Outbound Message n

Figure 6-1 Depiction of the stimulus/response notion of a SODL process

This is not the case in SODL. The only mechanism provided for simulation object interaction is message

passing between different instances. Methods are provided for individual instances to manipulate their own

internal state.

6.2. Approach
SODL is a completely event driven language. It is heavily based upon C++, and relies upon many of the

constructs of that language. Source code in SODL is passed through a parser and generates a collection of

C++ files. These files are then compiled using a standard C++ compiler. Though the overall structure of

the programming language is different from C++, the internal code executed when handling events is

entirely C++. The build process is depicted in Figure 6-2.

71

[soDL code 1o 0 C++ code 1+ Object Code 10ine Executable
parser (sp) compiler

Figure 6-2 SODL project build steps

This approach is similar to others that have been employed for distributed simulation systems. In

particular, both YADDES (Priess 1990) and APOSTLE (Wonnacott 1996) use this approach of translating

a simulation specification from their respective languages, translating these user files into C and C++ files

respectively, and then using standard compiling and linking tools to create an executable. It has the benefit

of allowing systems to be ported to other platforms without having to write platform dependent binary

code.

6.3. Constructs
A construct is the basic building block of SODL. In many aspects, a construct is roughly analogous to a

C++ or Java class. Figure 6-3 shows the basic form of a construct.

{ construct-type:construct-name [(parent-construct)]
;I
{ construct-definition }

}

Figure 6-3 Basic construct form

Constructs are defined in files with a specific extension. Valid construct types and their associated file

types are listed in Table 6-1.

Construct File
type Extension Description

Defines a message that can be passed between object instances. It can
message .msg contain data and method descriptions. Messages have an associated

delivery time.
Defines behavior of a simulation object instance. It can receive and send

process .proc messages, it has state variables, as well as method descriptions. It also
contains stimulus/response definitions for handling messages.

Table 6-1 SODL Basic construct types

Optionally, constructs can inherit some functionality from a parent construct. Inheritance takes its form by

enclosing the parent construct type into a set of parentheses following the declaration. Some constructs can

72

optionally contain no functionality of its own, or extensive definitions of internal data, methods, and

additional construct dependent definitions.

6.3.1. Message constructs

SODL files with .msg extensions contain message constructs. These message constructs are the means by

which various processes within the simulation communicate with each other. They can have internal data,

called a payload, and methods that act upon that payload. Sp creates two C++ files for each message it

processes. The first is a header file, and the other is a source code file. Details on these files are described

in Chapter 7. Entries for compiling them are placed into a Makefile for building the final executable. They

are explored in depth in section 6.7. Sample message constructs are depicted in Figure 6-4.

{message:generic;}

a - generic.msg, a simple message with no data or methods.

{message:child_message(parent-message);}

b - child message.msg, a simple message with no data or methods, with inheritance

Figure 6-4 Sample message constructs

6.3.2. Process constructs

{process:simple;}

a - simple.proc, a simple process with no data, methods or modes.

{process:childprocess(parentprocess);}

b - child process.msg, a simple process with no data, methods or modes, inherited from parent.

Figure 6-5 Sample process constructs

SODL files with .proc extensions contain process constructs. A process construct has internal data, called a

state, and methods that act upon that state data. Unlike message constructs, process constructs also have

modes, which in turn have nodes. Each mode can be activated and deactivated independently. Each node

can receive a message of fixed type, which changes the internal state of the process, and transmit messages.

Nodes can only receive messages when their parent mode is active.

73

From one process construct, sp creates a pair of files to define in C++ the functionality of the process

within the simulation engine. Details on these files are described in Chapter 7. Sample process constructs

are depicted in Figure 6-5.

6.4. Import declarations
In order to make use of more than one construct, the programmer must reference them from within the

body of all referencing files. This is done through an import directive. Import directives take on the form

depicted in Figure 6-6.

{ import [construct-type]
{

construct-namel [,construct-name2 [...
}

Figure 6-6 Import directive specification

Import directives should be located at the top of a source code file, prior to the file's construct definition.

There are two varieties of imports, the first imports SODL constructs for use within the importing

construct, the other imports non-SODL declarations, such as C++ header files.

6.4.1. Importing SODL constructs

{import message {root-message} }

{ message:start sim(root message); }

a - startsim.msg; Imports message:root message it to be used in the messages body.

{import message {startsim, SetView} }

{import process {View3D})

{process:rootprocess(View3D);}

b - rootprocess.proc; Imports message:start sim and message:SetView, as well as
process: View3D. process:root process inherits functionality from process: View3D.

Figure 6-7 Sample import directives for message and process constructs

For importing SODL constructs, the construct-type in the import directive must match the construct-type in

each of the files associated with the construct name. That is, when importing messages, the keyword

74

message is used as the construct-type, and similarly for importing process constructs. This is necessary

because different construct types are used differently in SODL, and the distinction in important. Figure 6-7

illustrates how some simple constructs import other constructs.

Message and process imports must be in either the planDir or the tmpltDir, as defined by the sp command

line parameters.

It's not normally useful for message constructs to import process constructs. However, the language does

provide for this possibility, even though any attempt to declare a process within a message produces an

error when sp is run.

6.4.2. Importing non-SODL files

{import {<stdlib.h>, <stdio.h>} }

{message:start sim(root message);}

a - startsim.msg; Imports stdlib.h and stdio.h for use in the start_sim message.

{import std {<vector>} }

{process:rootprocess;}

b - rootprocess.proc; imports the declaration for the std::vector class.

{import gvm {Node} }

{process:View3D;}

c - View3D.proc; imports the declaration for the gvm::Node class.

Figure 6-8 Sample non-SODL construct imports

Import directives also allow importing C++ header files with a way to allow compilation with external C++

source code. Figure 6-8 illustrates some examples.

Here Figure 6-8a imports the stdlib.h and stdio.h header files into the header file produced for the

message:start-sim construct. This form (omitting the construct-type) should be used for any includes

which are in the C++ global namespace.

75

Figure 6-8b imports the header file for the std::vector<T> class. In this case, we use this form for

including headers for declarations in the std namespace.

Finally, figure 6-8c imports the header file gvm/Node.h, which must reside either in planSubdir/gvm or in

tmpltDir/gvm. It will also compile into the final executable the file gvm/Node.cxx. Here any declarations

should be in the gym namespace.

6.5. Member Variable Declarations
Message and process constructs both allow declaration of member variables. Member variables are

declared inside the construct declaration, and take on the illustrated in figure 6-9.

[namespace::]data-type:variable-name [[I [Isize]] [: initial-value] ;

Figure 6-9 SODL construct member variable declaration

From this we can declare variables of variety of types, including arrays, each of which can be initialized

with a certain value.

6.5.1. Basic data types
Data Type Description
bool Boolean value (takes one of the values {true, false})
byte 8-bit unsigned character value. Defined by typedef unsigned char byte;
char 8-bit signed character value
double Double precision floating point value
float Single precision floating point value
int Single precision signed integer value
long Double precision signed integer value
mtype A Message type value. Defined by typedef sodl::Defs::MessageType sodl::mtype;
rand A random number stream. Defined by typedef sodl::Random sodl::rand.
process A handle to a process. Defined by typedef sodl::ProcessHandle sodl::process;
profile A profiling tool class. Defined by typedef sod::ProfleTools sodl: :profile.
ptype A Process type value. Defined by typedef sod::Defs: :ProcessType sodl: :ptype;
uint Single precision unsigned integer value. Defined by typedef unsigned int uint;
ulong Double precision unsigned integer value. Defined by typedef unsigned long ulong;

Table 6-2 SODL construct member variable basic types

Member variables can take on any of the basic types listed in table 6-2. Each of these data types has

exactly the same properties as the C++ data types of the same name, or typedef as the case may be. In fact,

they are instantiated as those very same C++ data types.

76

Table 6-3 provides some sample declarations and their meaning within the SODL language.

SODL Declaration Description
int:x; Creates an integer value named x with an undefined initial value.
double:y(0.0); Creates a double precision value named y initialized to 0.0
float:z[3](1.0); Creates an array of 3 floating-point values, each initialized to 1.0.
char:x[]; Creates an empty array of characters. Initializer cannot be used in this case.
long:y[4]; Creates an array of 4 uninitialized long integers with undefined initial values.

Table 6-3 Sample SODL member variable declarations

message:start
H /message:start

int:x; H Single precision integer
double:y(0.0); H Double precision floating-point number initialized to 0.0
float:z[3](1.0); //Array of 3 floats each initialized to 1.0

} //message:start
}

a - member variables constituting the payload of message:start instances

{
process:root
{ // process:root

char:x[]; H Uninitialized array of characters of unspecified length.
long:y[4]; //Uninitialized array of 4 long integers

} // process:root

b - member variables constituting the state of process:root instances

Figure 6-10 Sample member variable declarations in SODL constructs

Arrays are implemented using the C++ Standard Template Library's std::vector<T> making them

somewhat more flexible than the traditional C-style technique of using a pointer. Pointers can still be

declared if programmers explicitly state the namespace (i.e. the global namespace). This technique is

covered in section 6.5.2. Some sample variable declarations are provided in figure 6-10.

6.5.2. Extended data types

You can alternately create structures or other data types in a C++ namespace (including the global

namespace). By explicitly specifying the namespace, programmers can provide instances of any variable

type that could be instantiated in a C++ program. Any structures in namespaces (including the global

77

namespace) need to be retrieved through an import directive. Some sample variable declarations are shown

in Table 6-4.

Declaration Import Needed Description
std: :set<double> instancestd::set<double>:x; {import std {<set>} } named x, uninitialized.

pststd (<string>) std::string instance named y,
std::string:y("Hello") {import initialized to "Hello".

An array of 4 GLenum 's
GLenum:mode[4](GLPOLYGON); {import {<GL/glut.h>} } named mode, initialized to

GL POLYGON.
An instance of gvm::Node*

gvm::Node*:gr_node(NULL); {import gvm {Node} } named grnode, initialized to
NULL.

Table 6-4 Sample extended data type declaration

As in the standard data types, arrays are instantiated as std::vector<T>.

6.5.3. Process constructs as data members

It is also possible to declare processes as variables within process construct declarations. These

declarations can take on either of the two forms shown in Figure 6-10.

When a process is declared within a process construct, it is important to note that the variable associated

with the process declaration is only a handle to the actual process instance, and not the instance itself. No

methods or internal data can be accessed through this handle. The handle acts as an address for message

delivery, and for filtering incoming messages. It does not have any type information associated with it,

though a typed handle can be resolved to gather that information.

When the first form in figure 6-11 is used to declare a process, an actual instance (or collection of them in

the case of arrays) of the type specified by the construct name field is created. The simulation engine

specified in the node-distribution field will then manage the activities of its instances. This form can only

be used in process construct declarations, and not within message constructs.

construct-name:variable-name [[size I] [:node-distribution];
process:variable-name [I1 I [size I] ;

Figure 6-11 Process member variable declaration

78

The second form allows the variable to act as a placeholder and does not actually create any process

instances. Instead, an empty handle (or an array of them) is created which allows local storage of

references to arbitrary process instances. This form can be used in either process or message constructs.

Some sample process declarations are listed in Table 6-5.

Declaration Import Needed Description
{import process {ball} I Array of 1000 handles to process:ball instances

ball:blO00; iprnamed b.

Node3D:n; {import process {Node3D} } Handle to a process:Node3D named n.
process:shape[]; Uninstantiated and unspecified process handle array.

Table 6-5 Process construct declarations

Process instances are statically assigned to a specific simulation engine for the duration of the simulation

run9. The node-distribution field can be used to specify which simulation engine controls each of the

instances declared in the construct. When the node-distribution is omitted for a process declaration, the

construct will be instantiated and controlled in the engine where the construct declaring the process is

controlled.

engine-node-number
< element-node-equation >

Figure 6-12 Forms for specifying controller simulation engine

The two forms for specifying the node-distribution are shown in Figure 6-12. The first form can be used

either with single instances or on arrays or processes. It specifies that the process instance (or all of them in

the case of an array) be controlled by the engine-node-number.

The second form allows for different elements of an array of processes to be controlled by different

simulation engines. This second form allows general C++ code which, when evaluated, produces an

unsigned integer value, to be placed between angle brackets. There is also a macro substitution for the

characters '@' and '#'. The '@' character evaluates to the index in the array of the process. The '#'

evaluates to the total number of elements in the array. Each element is then assigned to the engine to which

its element-node-equation evaluates. Some examples are listed in Table 6-6.

9 There is no process migration in the current SODL simulation engine, though there is nothing to preclude
this feature from future implementations.

79

Process declaration Description
View3D:view:3; A new process: View3D instance is created on simulation

engine 3.
An array of 200 process:Node instances is created on

Node:nodes [200]:10; simulation engine 10.
10000]: @%((long) sqrt(#)); An array of 10000 process:Simple instances. Engine

Simple:simple[10; i%100 controls simple[i].

Table 6-6 Engine specification for process declaration

One final note here is that message constructs cannot have as data members explicitly typed process

declarations. That is, only the second form in figure 6-10 is allowed within a message construct.

6.5.4. A note on references and pointers

Because of certain constraints associated with the Time Warp algorithm, C++ references, although ignored

during the initial processing of SODL files (i.e. with sp), may cause problems with C++ compilers. This

stems from the fact that copying class instances containing as member variables references causes some

(perhaps all) compilers to complain without explicit declaration of the copy constructor. The decision to

forgo this declaration (for performance concerns) has made it necessary to likewise forgo the use of

references.

Pointers may be used in lieu of references, though they are stylistically and functionally inferior to

references in C++. Still, even though permitted, their use should generally be eschewed. That's not to say

that there is no use for them; a pointer was used for the GLUT view manager as a means of allowing a

process to reference the same view instance regardless of its timestamp. This provided a significant

performance improvement while retaining a suitably generalized mechanism for producing graphical

output.

Stepping back to consider the implications of a pointer in a general SODL environment, one sees that any

uses of a pointer must be atemporal in their nature when defined in terms of a process construct, and highly

questionable in terms of a message construct. In the case of a message construct, a pointer really has no

meaning since the destination of the message may be a process instance located on a different host

machine. In the case of a process construct, only the pointer is copied to each process instance during the

state saving portion of the Time Warp algorithm; the data that the pointer points to is not copied.

80

Therefore, unless arrangements are made to reallocate data at each of these temporal transitions, all process

instances associated with a particular process (i.e. the same process at different points in time) point to the

same memory location and can interact with the data in that memory location atemporally.

6.6. Method Declarations

Both types of constructs can also declare methods. For messages, these methods behave the way they do in

most object oriented programming languages. That is, a programmer can call a method defined within a

message construct declaration. However, in process construct, since both messages and processes only

have handles to other processes, there is no way to call the methods of another process. The reason for this

is that a process may be instantiated on a remote simulation node, and not directly accessible to the local

process instance. Methods may be declared as indicated in figure 6-13.

method:method-name(access-specifier; return-type; [variable-specifier; [variable-specifier; [... 1]])
{

method-body
}

Figure 6-13 General method form

The access-specifier is one of {public, protected, private}. It tells the parser what sort of access to the

method is allowed. The meanings are analogous to the respective C++ keywords.

The return-type is simply a C++ data type or any of the data types listed in Table 6-2. Any types not listed

in Table 6-2 need to be prefaced with their C++ namespace identifier, including any types defined in the

global namespace (in this case they need to be prefaced with '::')

Method parameters are defined just like member variables, as described in Figure 6-9. They also require

that any non-standard data types be prefaced with the identifier for the namespace in which they were

defined.

The method-body is nothing more than some C++ code that performs the desired function of the method.

This code is cut from the SODL program and pasted directly into the resulting C++ source code files

Method names must be unique within the process or message in which they are declared.

81

message:start
s emessage:start

double:x[10]; /Uninitialized array of 10 doubles

method:getX(public; double; uint:i;)
{ / method:getX(public; double; uint:i;)

return (i<x.sizeo) ? x[i] : 0.0; H Return x[i] if i is in [0, x.sizeO)
} // method:getX(public; double; uint:i;)

method:setX(public; void; uint:i; double:v;)
{ // method:setX(public; void; uint:i; double:v;)

if (i<x.sizeo) x[i]=v; H Set x[i] to v if I is n the proper range
} / method:setX(public; void; uint:i; double:v;)

method:init(public; void;)
{ / method:init(public; void;)

for (int i=0; i<x.sizeo; ++i) x[i]=0.0; /Initialize all elements of x to 0,0
} // method:init(public; void;)

H message:start

Figure 6-14 Sample methods

A sample method declaration for a message construct is presented in figure 6-14. Process constructs handle

methods in exactly the same way.

6.7. Messages

{ message:message-name[(parent-message)]

;I{ message-definition)

Figure 6-15 Message construct form

Messages are packets of information passed between process instances and provide the only mechanism for

inter-process communication. Each message has a source process and a collection of destination processes.

They flow from the source process to the processes in the destination list. Figure 6-15 shows the general

form of a message construct. Figure 6-16 shows how the messages flow from source to destination in

detail.

82

The message-name is a unique type identifier for the message construct being declared. All message

instances have as their type one of the Defs::MessageType enumerators, Defs::SMTimessage-type. The

parent-message allows for inheriting the data members and methods of the parent-message message type.

Sending process

Controller receiver - Receiving process
Process Controller

transmitter Controller receiver Receiving process

Engine transmitter Controller receiver Receiving

Engine receiver Controller receiver Receiving process

Engine Stand Engine receiver Controller receiver Receiving process
transmitter

Engine receiver Controller receiver H Receiving process

Controller receiver Receiving process

Controller receiver Receiving process

Controller receiver Receiving process

Figure 6-16 Message flow from sending process to receiving processes

Messages contain a collection of system-defined parameters, and possibly a user-defined payload and

collection of methods. The message-definition is the user-defined portion of the message definition and

consists of these member variables and methods declared as indicated in sections 6.5 and 6.6 respectively.

In addition to the user-defined portion of a message, there are a number of system-defined methods and

member variables.

6.7.1. System-defined message member variables

The system-defined member variables allow users to customize certain aspects of message delivery.

Though these variables should be manipulated through the provided accessor functions described in section

6.7.2.

83

The member variables in Table 6-7 are declared as protected (except for genTime, which is private) and

non-static.

Message Description
member variable
destination list:dest This is the list of destination processes for the message. destination-list is a

dl d typedef of std: :map<ulong, std::set<ulog> >.
double:genTime Simulation time at which this message was generated.
message:me A unique identifier for the owning message instance.

Engine node number controlling the message instance. This may be different
ulong:node from the engine node number where the message was actually generated.

The user can, at compile time specify a collection of destinations for the
boolpreempt(false) message. If preempt is set to true, the message is not sent to those destinations.

Any destinations added during the handling of the message are retained.
This is shorthand for the source process of this message. source.first is the node

process:source in the distributed simulation managing the source process. source.second is the
specific index of the source process.

double:ime Simulation timestamp for message delivery.
bool:tx(true) The user can set tx to false to prevent message transmission. tx defaults to true.

Table 6-7 System-defined message member variables

6.7.2. System-defined message methods

Access to the member variable listed in Table 6-7 should be performed through the member functions,

rather than direct manipulation of them. Table 6-8 provides a list of useful system-defined message

methods, some of which can be overloaded to change their behavior.

Each of the methods can be overloaded in a message construct declaration, though the only two methods

where this serves any clear purpose are init and getTX.

In the case of init, the default behavior does not do anything; it is an empty function. However, some

initialization of member data may not easily be initialized at the location of its declaration. The init method

is provided as a means to address that shortcoming.

The getTX function can be overloaded to provide a means to test certain conditions that will either permit

or refuse transmission of the message.

In all cases of method overloading, users should ascertain whether they desire the default behavior of the

parent construct to be an aspect of the child construct's behavior. If so, calls to these parent construct

versions need to be explicitly made from within the construct method of the child construct.

84

Message method Description
method:addDest(public; void; process:p;) Adds p to the list of destinations.

Adds p[i] to the list of destinations,
nethod:addDest(public; void; std: :vector<proeess>:p;) i<p.sizeO

Clears the message's destination list, andmethod:clearDest(publie; void;)sespemtotu. sets preempt to true.

method:getGenTime(public; double;) Returns genTime to the calling routine.
method:getlD(public; sodl:: Handle;) Returns a copy of me to the calling routine.
method:getNode(public; long;) Returns node to the calling routine.
method:getSource(public; process;) Returns source to the calling routine.
method:getTime(public; double;) Returns time to the calling routine.

Returns true if and only if tx is true and the
method:getTX(public; bool;) destination list is not empty. It can be

overloaded to check for additional criteria
for message transmission.
Returns the message type to the calling

method:getType(public; metype;) routine.
Returns a string representation of the

method:getTypeName(public; std: :string;) esa t ing r otine.
message type to the calling routine.

An initializer that is called immediately
method:init(public; void;) after message generation. It can be used to

perform specific initialization.
method:isPreempted(public; bool;) Returns preempt to the calling routine
method:isType(public; bool; retype:t;) Returns true if and only if the message

instance is of type (or a subtype of) t.
method:setPreempted(public; void; boolp;) Sets the preempt flag top.

Sets time to t. This is adjusted during
method:setTime(public; void; double:t;) message transmission to ensure that it

occurs at some time after the message
generation time (genTime).

method:setTX(public; void; bool:v;) Sets the tx flag to v.

Table 6-8 Common system-defined message methods

6.7.3. System-defined messages
Message name Description

Antimessage instances are paired with message instances and saved on the
simulation engine that owns the process that is the source of the message.
An Animessage is transmitted when a rollback causes the engine to revoke
messages that have previously been transmitted. When a message and its
associated Antimessage are combined, they annihilate each other, ensuring
that the original message is never delivered.
EndSimulation messages are time stamped with the end simulation time
(1e307) and are intended to be delivered to all simulation processes by the

message:EndSimulation time the simulation is complete. This has the affect of setting the system
clock of each engine on an engine stand to the end simulation time when it
has no messages remaining to process
Each process in the simulation receives a StartSimulation message when
the simulation begins. This is time stamped with some time prior to 0

message:StartSimulation (defaults to -1). This allows individual processes to perform some last
minute initialization and set up prior to actually beginning the simulation
run and as a bootstrapping device.

Table 6-9 System-defined messages

85

A number of messages are used within the run time system to perform various functions. Users defined

processes can, in some instances receive these messages. Each is defined in detail in the following

sections. Additional messages are defined for the GLUT view manager, and are discussed in more detail in

Chapter 9. These system-defined messages are listed in Table 6-9.

6.7.4. Message Handles

Each message has a message handle, me, containing identifier information. This is a sodl::MessageHandle

instance (which has a typedef to message) and contains the index of the engine where the associated

message was generated, and the message instance count for that message. Each message generated has a

unique message handle. Users should not modify these values, as it may cause problems with message

revocation.

6.8. Processes
Process can be thought of as a self-contained package of state information that responds to incoming

messages. The process will change its state information and send new messages in response to an

incoming message. Messages are processed in time stamp order. The process takes on the time stamp

value of the last message it processed.

{ process:process-name [(parent-process)]

{
process-definition

}

Figure 6-17 Process declaration syntax

Processes are isolated message handlers. They are unable to communicate with each other directly, and

must rely exclusively upon message passing to perform this function. Process declarations have the form

specified in Figure 6-17. The process-name is a unique type identifier for the process class being declared.

All process instances have as their type one of the Defs::ProcessType enumerators, Defs::SMT-process-

type. The parent-process allows for inheriting the data members and methods of the parent-process

process type. The process-definition is the user-defined portion of the process definition. It consists of

86

member variable and method declarations as described in sections 6.5 and 6.6. It is in this process-

definition section that we also define the process modes and node, which allow the process to handle

messages.

The C++ code sp generates declares one class for each process type defined named sodl::process-name. It

performs the functions associated with the process. Instances of these classes receive messages and

manage the responses to those messages. The structure and format of these files is discussed in more detail

in Chapter 7.

6.8.1. System-defined process member variables

There are a number of system-defined member variables associated with a process. These member

variables, listed in Table 6-10, may be useful in governing a process response to incoming messages. Other

system-defined variables are accessed through the accessor functions in section 6.8.3.

Process Purpose
Variables

An identifier for this instance of the process. Useful for addressing messages to owning
process:me process. The resolve method can be called to get a reference to the actual handle

associated with the process.
A random number stream. This is a static member in the sodl::Process declaration, so

rand:random all such instances share the same random number generator (RNG). Programmers can
provide their own RNG instance (as a process member variable) in the process if
desired.

mtype:type Type information regarding the specific process instance.

Table 6-10 System-defined process member variables

6.8.2. System-defined process methods

There are several system-defined methods useful in ascertaining or establishing certain parameters related

to a process state. The methods listed in Table 6-11 are intended to assist the programmer in making

decisions regarding the process state and to perform various tasks associated with process management.

Most of the methods are not intended to be overloaded, and should not be without great care taken. The

exceptions to this are methods backup,fossiCollect, init, and restore. These methods provide mechanisms

for dealing with initialization (init) and as a means by which a process can interact with the underlying

simulation synchronization protocols.

87

Process System Define Methods Purpose
When the process is backed up for the purpose of sate
saving, the time stamp of the new state is set and the

method:backup(public; void;) backup method is called. If programmers want to
perform some action at this point, they may overload the
backup methods to perform it.
When a process state is about to be fossil collected, its

method.fossilCollect(public; void;) fossilCollect method is first called. Programmers may
overload this method to perform any required output or
irrevocable action prior to actual fossil collection.
Returns a reference to the engine controlling this

method:getEngine(public; sodi: :Engine&;) process instance to the calling routine.
Returns to the calling routine the unique index on the

method:getlndex(public; long;) simulation engine for the associated process instance.
Returns to the calling routine the simulation engine

method:getNode(public; long;) controlling the associated process instance.
Returns to the calling routine the specific type of the

metbod:getType(public; ptype;) associated process instance.
Returns the process timestamp of this instance to the

method:getTime(public; double;) calling routine.
Overloading init allows initialization. It is called shortly

method:init(public; void;) after process instantiation, and before the first
simulation message is delivered.
Returns to the calling routine true if and only if *this is

method:isType(public; bool; ptype:t;) an instance of a process of type t. This includes
subclasses of type t.
When a process state is restored due to a rollback, the

method:restore(public; void;) process controller calls the restore method to allow the
process the opportunity to perform any functions that
might be required.

Table 6-11 System-defined methods for process classes

6.8.3. Process Handles
Method Description
ptype ProcessHandle::getfype(void) Returns the type for the sodl::Process instance associated with

this sodl: :ProcessHandle instance.
boolProcessHandle::isType(ptypet) Returns true exactly when the sodl::Process instance

b associated with this sodl::ProcessHandle is of type t.

Table 6-12 sodl: :ProcessHandle type routines

Process handles are unique identifiers for process instances. Each process instance has its handle in the

member variable, me. This is of type sodl::ProcessHandle, and has an associated typedef, process. Each

handle contains engine and instance index information used to identify a specific process instance. Process

handles can also be used as a reference to process instances. In this case, type information can be derived

from the process handle instance. Methods to perform this sort of type-query are listed in Table 6-12.

88

6.8.4. Special Processes

There are no special system-defined processes, in the sense. However, the root process occupies a unique

position in the simulation system. It is always instantiated and controlled on engine 0 in the distributed

simulation, and has index 0. It is the base process specified in the sp command line argument.

6.9. Mode and Node Declarations
Only process constructs may define modes, and nodes within those modes. A mode may be either active or

inactive. Only nodes defined within active modes can process messages. This feature is useful if there are

a different behaviors associated with different process modes. For instance, suppose a user wanted to look

at the dynamics associated with an ant colony. Individual ants might have different functions that change

with respect to certain external stimuli. At one point, the ant might be out looking for food. At another

time, it might be taking the food back to the nest. Still another time it might be defending the nest from an

intruder. Each of these different behaviors can be activated and deactivated inside the code simulating the

ant's behavior, and messages will only be delivered to nodes that reside in active modes.

Each node is declared so that it responds to a specific message type. These nodes produce state changes

within the receiving process and subsequently transmit a (possibly empty) collection of output messages in

response.

6.9.1. Modes

Modes provide a mechanism for easily changing process behavior without the programmer having to

explicitly perform a number of checks, and handle the message differently depending upon certain internal

state data. Each mode in a process construct has a unique name corresponding to a process member

variable of type sodl::ProcessMode, a C++ class defined as part of the underlying SODL system. The

format for declaring a mode is illustrated in Figure 6-18. sodl::ProcessMode instances have methods,

listed in Table 6-13, for managing the mode state.

89

mode:mode-name
{

node-declarations

Figure 6-18 Mode declaration syntax

Modes are inherited from parent processes, though the mechanism governing this inheritance may not be

immediately obvious. Let process construct a, with a mode named m, be a sub-process (i.e. inherited from)

of process construct b, also with a mode named m. In the class declarations sp generates, a::m and b::m are

actually the same declaration. That is, only b::m is declared; any changes to m from a methods or node in a

change the declaration in the parent class. Thus, whatever state changes are made from the perspective of a

are also made from the perspective of b, and vice versa.

Mode Methods Purpose
bool sodl::ProcessMode::isActive(void) Returns true if the mode is active or false if it is not.
void sodl: :ProcessMode::set4ctive(bool a) Activates (a-true), or deactivates (a-false) the mode

Table 6-13 Mode system-define methods

When the setActive method for a mode is called, the change does not immediately occur. The change will

be finalized only when the process clock is advanced. The reason for this is that there may be multiple

messages with the same timestamp addressed for the same process. If one of them changes the active flag

for a mode, and were that change to be immediately reflected, handling of the other message (if it's done

afterwards) might be affected. By waiting until the process time stamp is advanced to commit changes to

the active flag, all messages will be processed consistently vis-A-vis the mode active flags, regardless of the

order in which the messages are actually handled.

6.9.2. Nodes

node:node-name [message-type:input-message-name I
I output-messageo, output-message1, ..., output-message, I
{

node-body
}

Figure 6-19 Node declaration syntax

90

Nodes are defined within a mode. No two nodes within the same mode declaration may have the same

name, though nodes in different modes may. The declaration format for a node is illustrated in Figure 6-19.

The form for output message specifications is depicted in Figure 6-20.

output-message-type:output-message-name

[[size-specfiaction] I
]

=> (destinationo; destination,; ...; destinationd;)]

:(time-specifier)

Figure 6-20 Output message form

6.9.2.1. Input message

{import message {Generic} }
{import std {<iostream>} }

process:Simple
p/process:Simple

mode:Default
d emode:Default

node:runner[Generic:in][I
{ // node:runner[Generic:in][]

std::cout << in.data << std::endl; /Display input data
} // node:runner[Generic:in] []

} // mode:Default
} H process:Simple

Figure 6-21 Stand along input message usage

Nodes are defined to accept all messages of type message-type that are transmitted to the owning process

instance. The node will also accept messages of types derived from message-type. So, if node n accepts

messages of type m, and message p is a sub-construct of message m, any messages of type p will also be

handled in node n. p will be first cast to type m, and any methods or member variables in type p, not in

type m will not be accessible to n'°.

10 In fact such attempts at a dynamic cast will probably lead to an abnormal program, termination since the

messages are passed to the node by value, and not by reference.

91

From the programmer's perspective, a variable with name input-message-name acts as the interface to the

message. It is a message instance that is passed to the node handling the message and has a parameter of

type input-message-type with name input-message-name. An example of how declare and interact with an

input message is depicted in Figure 6-21.

6.9.2.2. Output messages

The output message format allows programmers the flexibility of compactly specifying the default number

of messages, default destinations, and default time stamps. In most cases these call all be overridden (the

only exception being that the array form must be used in order to send multiple instances of the same

message type from the output message specifier).

6.9.2.2.1. Default output message form

{import message {Generic} }
{import std {<iostream>} }

process:Simple
s sprocess:Simple

mode:Default
e /mode:Default

node:runner[Generic:in] [Generic:out]
{ / node:runner[Generic:in][]

std::cout << in.data << std::endl; H Display input data
out.addDest(me); // Return the message to me
out.setTime(in.getTime0+1.0); H Schedule for later return

} // node:runner[Generic:in] []
H mode:Default
H process:Simple

Figure 6-22 Explicit specification of destination & timestamp in body

The default output message form does not specify a size, destination, or timestamp. In this case, the

process creates exactly one message instance of output-message-type, named output-message name. The

destination list is empty, meaning that it will not be delivered to any process unless some destinations are

added via the output-message-name.addDest(...) method. The default time stamp is also used, which is

some point after the time stamp value in the process handling the message. The message timestamp can be

set using the output-message-name.setTime(...) method. It accepts a double precision floating point

92

number serving as a timestamp for the message. Figure 6-22 modifies somewhat the code in Figure 6-21 to

demonstrate how a node may customize the message internal data.

If the output message time stamp is not explicitly set anywhere in the body of the node, the simulation

engine will set it to a value slightly larger than that of the input message. The actual value of this

timestamp is given in Equation 6-1.

{It < 0, (1 - io-15). current-time

next-time(t) = t=0, 10-110 (-1iO (6-1)
n >e0, (1+ 1O-15). current_ time

6.9.2.2.2. Output message size specification

node:runner [Generic:in] / Upon receipt of an input message
[Generic:outl [], //Create unspecified number of outputs
Generic:out2[5]] /And an array of five of them

/ node:runner[Generic:in] [...]
for (int i=O; i<out2.sizeo; ++i) / Loop over the output arrays
{

outl.push back(me); H Create a new message with source me
outl.backo.addDest(me); H Add me as a destination process
outl.backo.setTime(getTimeo+i); H Schedule for later return
out2[i].addDest(me); /Add me as a the destination process

S//for (int i=O; i<out2.sizeo; ++i)
H node:runner[Generic:in][...]

Figure 6-23 Message count specification for output message arrays

The output message size specification allows the programmer to create multiple message instances each

independently addressed, time stamped, and to have differing payloads. When either the '[]' or '[size-

specification]' form is used, output-message-name is passed to the node as a std::vector<output-message-

type> instance. In the first case, the vector is empty, and new messages can be added to the vector by

calling output-message-name.push-front(me). Messages can also be removed after their creation if the for

some reason do not merit additional consideration. This can be accomplished through use of the

std: :vector<T>.popjfrontO method.

93

This can also be done with the '[size-spcification]' form if additional messages are required, or the

programmer decides not to send some.

Figure 6-23 further modifies the code in the previous two figures (omitting the redundant code) to

demonstrate how to use either form. In the case of the messages in the out2 array, their timestamps will be

given by the default value defined by Equation 6-1. This means that it will take a very long time before

any of the out] messages will be processed. This is in fact going to lead to the situation where the memory

of the computer is eventually consumed by pending messages leading to an abnormal program termination,

quite likely prior to any of the out] messages ever being processed. The purpose of this code segment, and

many that follow is to provide some insight into the mechanisms for controlling message delivery, not

necessarily to provide a logical framework for nodes in systems that will eventually do anything useful.

6.9.2.2.3. Destination specification

Each output message can have an arbitrary number of default destinations. Each destination needs at run

time to resolve to a process or std::vector<process> instance. For arrays of output messages, this might be

somewhat limiting, so a mechanism for independently addressing different elements of an array of

messages, similar to that used in the initialization of arrays of variables, has been provided to allow

programmers this flexibility in a compact form. Any '@' characters will be replaced with the index of the

array element, and any '#' will be replaced with the size of the message array.

node:runner [Generic:in] //Upon receipt of an input message
[Generic:outl []=>(process(,@);), H Create unspecified number of outputs
Generic:out2=> (me;)] H And an individual one

H node:runner[Generic:in][...]
for (int i=O; i<5; ++i) H Loop over the output arrays
{

outl.push back(me); H Create a new message with source me
out .backo.setTime(getTimeo+i); H Schedule for later return

} / for (int i=0; i<5; ++i)
H node:runner[Generic:in][...]

Figure 6-24 Adding default destinations to output messages

Figure 6-24 shows an example of how this default addressing is specified. In the case of out2, (which has

changed from an array to a single message instance) the destination is explicitly declared in the node

94

header. In the case of outl, a C++ expression resolves to a process instance. In particular, message outl[i]

is sent to process(O,i), which is the i h process on simulation engine 0 (which for the moment we will

assume actually exists). In both cases, additional destinations can be added, each terminated with a

semicolon.

The expressions serving as message destinations are actually evaluated and added to the destination list

after the node has finished processing. The reason for this is that any changes to local variables used in

computing the destinations might be modified in the node body. However, the programmer can preempt

adding these destinations by calling the message's clearDestO method. This will clear any destinations

previously added to the destination list while setting a flag that is checked prior to adding the default

destinations.

6.9.2.2.4. Time stamp specification

node:runner [Generic:in] H Upon receipt of an input message
[Generic:outl []:(getTimeo+@), H Create unspecified number of outputs
Generic:out2:(getTime0*2.0)] H And an individual one

{ // node:runner[Generic:in][...]
for (int i=0; i<5; ++i) //Loop over the output arrays
{

outl.push back(me); H Create a new message with source me
outl.backo.addDest(me); H Add me as a destination process

} // for (int i=0; i<5; ++i)
out2.addDest(me); H Add me as a the destination process

} // node:runner[Generic:in][...]

Figure 6-25 Default time stamp specification

As with destinations, output messages can also have a default time stamp. It can also be set differently for

each message instance in an array. We again substitute the array element index for the '@' in the time

stamp specification, and the array size for the '#' character. We see this illustrated in Figure 6-25.

Here we have each of the message time stamps for outl[i] set to getTimeO+i. For out2, we specify the

message time stamp to getTimeO*2.0 (assuming that the current time is strictly positive).

As in the destination specification, the default time stamp value is set after the node complete processing

the input message. If in the course of handling the input message, the node has code to alter the default

95

time stamp value, an internal flag is set in the message indicating that it should not attempt to set the

message time stamp with the default value.

6.9.2.2.5. Combining destination and time stamp specifications

The default time stamp and destination specifications can both appear in the output message declaration

provided they appear in the order they appear in Figure 6-19. An example of this is shown in Figure 6-26.

node:runner [Generic:in] H Upon receipt of an input message
[Generic:outl []=>(process(,@);):(getTimeo+@),
Generic:out2=>(me;):(getTime0*2.0)]

I H node:runner[Generic:in][...]
for (int i=O; i<5; ++i) H Loop over the output arrays

outl.push-back(me); H Create a new message with source me
H node:runner[Generic:in][...]

Figure 6-26 Combined default destination and time stamp specification

6.9.2.3. Node body

As in methods, the body of the node declaration is merely a block of C++ code. This code dictates how the

node responds to the incoming message. This response may include creating state changes in the parent

process and formatting output message payloads, time stamps, destinations or other aspects of message

formatting.

96

Chapter 7. C++ code generation

When the SODL parser (sp) is run, it generates a number of files in baseDirlbldSubdir. For each message

and process file, two C++ source code files are created, one with header information and one with the

actual method definitions. Three additional files, Defs.h, Defs.cxx, and Main.cxx are also created.

Both process and message constructs in the SODL language become C++ classes in the resulting output

files. Data members and methods within the SODL constructs are incorporated into the resulting C++

classes in the obvious fashion of direct inclusion. There is also a great deal of functionality that must be

incorporated into the classes to ensure they properly interface with the simulation engine.

The SODL parser also creates entries into a Makefile in baseDir with a largely correct dependency

specification so that minor changes to one file do not normally necessitate rebuilding the entire simulation

system. Additionally, in a further effort to reduce unnecessary builds, C++ files are not written to the hard

drive if doing so would not change the contents of the resulting file.

One other point that should be made here is that it is not immediately obvious how to create a universal

library of the simulation engine that can be linked (either statically or dynamically) to create a final

executable. The reason for this is that there is a great deal of type information generated during the SODL

parser run needed within the SODL run-time system. Possible future enhancements include eliminating

this restriction, due to the lengthy time required to rebuild the run-time system for each simulation project,

or each time a given project changes in some substantive manner.

7.1. Message construct files
Member data and methods from message constructs are incorporated into the resulting C++ files

straightforward manner. The message class declaration provides the necessary functionality to operate

properly with the SODL run-time system.

97

7.1.1. A simple message construct

A basic message, one with no member data or user-defined methods still needs to provide typing

information so that it can be properly forwarded to the desired node within a process instance. Consider a

message construct with no explicitly defined parent type and no member data or methods, called generic. It

is depicted in figure 7-1, with the relevant output in figure 7-2.

{ message:Generic;)

Figure 7-1 A simple message construct in Generic.msg

namespace sodl namespace sodl
{{

class Generic : public Message Generic::Generic(process p)
{ : Message(p.getNodeo, p.getlndexo, SMT Generic)
public: {

Generic(process p); Generic::instancelnitO;
static void typelnit(mtype t); initO;
virtual Message& copy(void); }
virtual Message& copy(ulong);

Generic::Generic(ulong n, ulong i, mtype t)
protected: : Message(n, i, t)

Generic(ulong n, ulong i, mtype t); { Generic::instancelnito; }

protected: void Generic::instancelnit(void) {}
virtual void instancelnit(void); Message& copy(void)

{ return new Generic(*this); }
} Message& copy(ulong)

{ Message& rv = copy0; rv.setEngine(i); return rv; }

void Generic::typelnit(mtype t)
{
msgTypes[t] [SMT Generic] = true;
Message: :typelnit(t);

}
}

(a) - Generic.h (b) - Generic.cxx

Figure 7-2 Relevant output derived from Generic.msg

Here there are no user defined methods or data members. The focus of the message is to provide type

information that can be used in determining how any recipient processes will process instances of this

message type.

98

The public class constructor Generic(process p) is used to create a Generic class instance, and not one of

its subclasses. The parameter p is the process identifier of the message source. The call to the parent class

constructor breaks up the source process handle into its component parts and adds the type information.

From this, the root Message constructor sets the message source process handle and its type information,

and derives message generation time. The constructor then calls Generic::instancelnit to perform member

data initialization, and Generic::init to perform user-specified instance initialization. In this case, since

there is no user-define init method, this results in calling Message::init, which is empty.

Derived classes use the protected class constructor, Generic(ulong n, ulong i, mtype t), to pass source and

type information on to the Message class constructor. Like the public constructor, this constructor also

calls Generic::instancelnit to perform local data member initialization. It does not call the user-specified

initializer, since the language specification requires it to be explicitly called from the init method in the

derived class being instantiated.

The Generic::copy(void) and Generic::copy(ulong) methods are used to produce copies of the message.

The former returns a strict copy, while the other returns a copy but changes the message engine setting so

that it can be controlled by an engine instance other than the one on which it was created.

Static method Generic:: Typelnit(mtype t) is used to initialize the sodl::Defs: :msgTypes array containing

the parent-child relationship between different message types. This routine is called once during the

simulation system setup, prior to any messages actually being delivered.

7.1.2. Message construct with user-defined methods and data members

User-defined methods within a message construct are placed into the resulting C++ class declaration in the

obvious fashion. Given the message construct depicted in Figure 7-3, its data members and methods

declaration are added to the C++ class in the fashion depicted in Figure 7-4.

The instancelnit method is really only used when there is a need to initialize an array to some preset value.

For instance, in Figure 7-5, we declare the message construct message:sendvector and specify a default

initial value for the array, an equation relating each component of the array to its index in the array.

99

message:AddSubordinate

process: subordinates[];

method:add(public; void; process:n;)
I subordmnates.push back(n);}

method:getTX(public; bool;)
f return !subordinates.empty() && Message::getTXO;}

method: size(public; ulong;)
I return subordinates. sizeo; I

I

Figure 7-3 AddSubordinate.msg with one data member and three methods

namespace sodi namespace sod]

class AddSubordinate :public Message

public:
std::vector< process > subordinates; void AddSubordinate::add(process n)

{subordmnates.push back(n),

public: bool AddSubordinate: :getTX(void)
virtual void add(process){ return ! subordmnates.emptyO && Message::getTXO;}
virtual bool getTX(void);
virtual ulong size(void);

ulong AddSubordinate. .size(void)
I return subordinates.sizeo;}

(a) -AddSubordinate.h (b) -AddSubordinate.cxx

Figure 7-4 C++ Files resulting from AddSubordinate.msg

message: send array

long:x[100] ((3 1 * @%((long) sqrt(#))))

Figure 7-5 An initiali ed array as a data member in a message construct

When the developer specifies an initial value for a data member, the actual initialization normally takes

place in the class constructor proper. However, since SODL provides some additional flexibility in

initializing arrays, this needs to be accomplished in a routine where we can perform different computations

100

for each element. This is the primary purpose of the instancelnit method. Figure 7-6 depicts the

instancelnit method for the sendarray class generated because of processing the code in Figure 7-5.

void send array::instancelnit(void)
{
for (long xindex=0; xindex<100; ++xindex)

x.push back((3 1*xindex%((long) sqrt(100))));}

Figure 7-6 Initialization of the array specification in Figure 7-5

Note in particular the macro substitution of the 'xindex' and '100' for the '@' and '#' respectively in the

user-defined code.

7.2. Process construct files

Like messages, the C++ files generated from process constructs provide type information for the run-time

system and declare user-defined data members and methods. In addition, process constructs provide a

framework for processing messages.

7.2.1. A simple process construct

{process:Shape2D(Shape); }

Figure 7-7 A simple process construct, Shape2D.proc

The simplest process construct is one with no data members, methods or modes. An example of such a

process is depicted in Figure 7-5 and the resulting C++ code is in Figure 7-6.

Like the class declaration resulting from a message construct, process constructs result in class declarations

with two constructors. The first is a public constructor that is used to create an instance of that class, not a

derived class. The one parameter in the public constructor is the index of the engine where the process will

reside. The host engine is polled for its next available index which, when combined with the engine index,

is used to create the unique handle identifying the newly created instance. This handle information and the

type information is passed to the parent constructor all the way to the sodl::Process constructor which will

create a new process controller, and perform some setup on the actual process instance. The second

101

constructor is protected, and is intended can to be called from the constructor of a derived class. In both of

these cases, the instancelnit method is called to perform some additional initialization. Unlike the C++

class declaration resulting from a message construct, the user-defined init method (if any) is not called at

this point. The init method is called at the beginning of the simulation system initialization, but after all of

the processes have actually been instantiated.

namespace sodl namespace sodl{ {
class Shape2D : public Shape Shape2D::Shape2D(ulong n)
{: Shape(n, nextProcess(n), SPTShape2D)
protected: { Shape2D::instancelnito; }

Shape2D(ulong n, ulong i, ptype t);
Shape2D::Shape2D(ulong n, ulong i, ptype t)

public: : Shape(n, i, t)
Shape2D(ulong n); { Shape2D::instancelnito; }
static void typelnit(ptype t);
virtual Process& copy(void); void Shape2D::instancelnit(void) { }

Process& Shape2D::copy(void)
protected: { return new Shape2D(*(this); }

virtual void instancelnit(void);
void Shape2D::typelnit(ptype t)
{
procTypes[t] [SPTShape2D] = true;
Shape::typelnit(t);

(a) Shape2D.h (b) Shape2D.cxx

Figure 7-8 Relevant output from Shape2D.proc

The copy method is used to return a copy of the process instance. typelnit performs precisely the same

function as the method by the same name in the message construct derived class declaration, except that it

initializes the parent-child relationship between process types rather than message types.

7.2.2. Process constructs with data members and methods

Methods and non-process data members are handled identically to message constructs. For a more

complete treatise on this aspect of C++ code generation for the SODL system, refer to section 7.1.2.

However, a process can declare subordinate process instances within its definition. These process instance

declarations are handled similarly to regular data members, but there are some differences, as depicted in

Figures 7-9 and 7-10.

102

Note that the child's data type in the C++ class definition is type sodl::process. Also, note that the new

sodl::Child instance associated with child is actually allocated in the class constructor. This has the default

effect of creating a subordinate process on the same engine as the instance owning the sodi: :Child.

(import process {Child}

I
process:Simple

Child:child

Figure 7-9 Simple.proc declaration of a subordinate process instance to process:Simple

namespace sodi #include "Child.h"

class Simple :public Process namespace sodl

I I
protected: Simple:: Simple(ulong n)
process child;, Process(n, nextProcess(n), SPT Simple),

child((new Child(me.getNodeO))-->getIDO)
protected: {Simple::instancelnito;}

Simple(ulong, ulong, ptype);

Simple:: Simple(ulong n, ulong i, ptype t)
public: : Process(n, i, t),

Simple(ulong); child((new Child(me.getNodeO))-->getIDO)
static void typelnit(ptype);

{Simple: :instancelnito;}
protected:

virtual void instancelnit(void);

(a) Simple. h (b) Simple. cxx

Figure 7-10 C++ declaration and allocation of a subordinate process

(import process (ball) I

process:bounce

ball:b[400]:I@%)

Figure 7-11 bounce.proc declaration of subordinate processes on non-default engines

103

While this method works well for single process instances in a given process definition, it does not easily

extend to arrays of processes. A mechanism similar to array initialization described in section 7.1.2 is

employed for this purpose and is depicted in Figures 7-11 and 7-12.

Note again the macro substitution in instancelnit of 'bindex' for '@'. This splits the actual process

instances across two engines, one on engine 1 and the other on engine 2.

namespace sodl #include "ball.h"
{
class bounce : public Process namespace sodl

{ {
protected: bounce::bounce(ulong n)
std::vector<process> b; : Process(n, nextProcess(n), SPT bounce)

{ bounce::instancelnito; }
protected:

bounce(ulong, ulong, ptype); bounce::bounce(ulong n, ulong i, ptype t)
Process(n, i, t)

public: { bounce::instancelnito; }
bounce(ulong);
static void typelnit(ptype); void bounce::instancelnit(void)

{
protected: for (long bindex=O; bindex<400; ++bindex)

virtual void instancelInit(void); b.push-back((new ball(1+(bindex%2)))---getIDO);
}; }

}

(a) bounce.h (b) bounce.cxx

Figure 7-12 Declaration and allocation of an array of subordinate processes

7.2.3. Mode and node declarations

The primary purpose of a process is to receive input messages, change its internal state, and to format and

transmit outgoing messages in response to those input messages. Each of these steps must be performed

somewhere in the C++ code produced. The developer explicitly defines the way state data is changed in

response to an input message of a given type, as well as ensuring that outgoing messages have the proper

payload. The remaining functions of actually directing an input message to the proper node or nodes and

forwarding the output messages to the intended recipients is accomplished behind the scenes in the C++

code produced by parsing the SODL process files.

104

7.2.3. 1. Specifying njon-array output messages

Jimport std {<iostream>})
{import message (Generic, StartSimulation}

process:Simple

mode: start

node:proc[StartSimulation: strt] [Generic:om-->(me;):(0.0)]
{start. setActive(false); I

mode :run

node:proc[Generic:im] [Generic:om=>(me;):(getTimeo+ 1.0)]
{om.setTX(getTimeo < 100.0);}

Figure 7-13 Simple.proc sample mode & subordinate nodes

namespace sodi

class Simple : public Process

public:
ProcessMode run;
ProcessMode start;

protected:
Simple(ulong, ulong, ptype);

public:
Simple(ulong);
virtual void receiver(Message& msg);
virtual void setTime(double t);

public:
virtual void runproc(Generic in, Generic& out);
virtual void startproc(StartSimulation strt, Generic& om);

protected:
virtual void setypSimplerunproc(Generic& in, Generic& out);
virtual void setupSimplestartproc(StartSimulation& strt, Generic& om);

Figure 7-14 Siinple.h C++ relevant components of header file for Simple.proc

105

namespace sodi

void Simple:: setTime(double t)

Process:: setTime(t);
run.setTime(t);
start. setTime(t);

void Simple: :receiver(sodl: :Message& msg)

if (run.isActiveo)
I
if (msg.isType(SMT Generic))

Generic om(me);
Generic& im = dynamic cast<Generic&>(msg);
runproc(im, am);
setupSimplerunproc(im, om);
getControllero.transmit(om);

if (start. isActiveo)
I
if (msg.isType(SMTStartSimulation))

Generic om(me);
StartSimulation& strt =dynamic-cast<StartSimulation&>(msg);
startproc(strt, am);
setupSimplestartproc(strt, am);
getControllero.transmit(om);

void Simnple::runproc(Generic im, Generic& om) I om.setTX(++count < 100);}

void Simple:: startproc(StartSimulation strt, Generic& am) I start. setActive(false);}

void Simple:: setupSimplerunproc(Generic& im, Generic& am)
{ if (!om.isPreemptedo) om.addDest(me);)

void Simple:: setupSimplestartproc(StartSiinulation& strt, Generic& am)

if (!om.isPreemptedo) om.addDest(me);
if (!om.tinieOverrideo) om.setTime(0.0);

Figure 7-15 Simple. xx, message handling implementation

106

Figures 7-13 through 7-15 depict the C++ code generated that performs the functions associated with

message handling within a process construct. We first note that each mode is declared as

sodl::ProcessMode instances. The first portion of the message cycle is for each process to receive the

message and check to see if any of the active nodes can handle it. This is performed in the receive method.

Upon receipt of an inbound message, the process controller calls the receiver method for the process. From

there, each of the process modes is polled for its active status. All active modes will get a chance to

process the incoming message, provided they have nodes capable of processing messages of the input

message type. Upon entry into a code block representing an active mode, each node checks to see if it can

accept a message of the given type or of a derived type. Upon finding a node that can actually handle the

message, msg is cast to the proper type and output messages are declared. At this point, a properly typed

copy of the input message and a collection of references to output messages are passed to the method given

by the name Mode-NameNode-Name which contains the user specified code for manipulating the internal

state data of the process, as well loading the output message payloads. This code is copied directly from

the user code that was in the input process construct declaration.

Once the user-defined portion of handling the message has been performed, final output message setup is

handled in method setupProcess-NameMode-NameNodeName. This involves adding any default

destinations and time stamp values specified in the output message declaration. This method checks

internal flag values to ensure that code in the user-defined portion of the message handling did not override

these default values. If there was no override, the default destinations are added, and the message time

stamp is set to its default value, if specified (if it was not specified, either in the node header or body, then

Equation 6-1 is invoked).

The setTime method may at first glance seem to be out of place and unnecessary. However, when

sodl::ProcessMode variables change their active flag, this change cannot take place immediately, since

there may be additional pending messages with the same time stamp value as the current message being

processed. Since the order of these identically time stamped messages is not defined, we require that they

be processed in a well-defined manner regardless of the order in which they were actually received. Thus,

any changes to the mode active flags cannot take effect until the process time stamp advances. By

107

overloading the setTime method, we can set the time stamp value in the sodi: :ProcessMode instances in a

manner that allows consistent message processing.

7.2.3.2. Output message arrays

(import process {Vertex2D}}
{import message {SetVertex2D}}

process:hierarchy

Vertex2D:vertl4];
mode:Default

node: start
[StartSimulation:in]

} } }x2~u-v[]>vrt@;:@*-e9)

Figure 7-16 hierarchy.proc with an output array of messages

void hierarchy: :receiver(Message& msg)

if (Default.isActiveo)

if (msg.isType(SMTStartSimulation))

vector<SetVertex2D> out-sv;
for (int out-sv-indexa =0; out-sv-indexa < 4; ++out-sv indexa) out sv.push back(me);

StartSimulation& in = dynamic-cast<StartSimulation&>(msg);
Defaultstart(in, out sv);
setuphierarchyDefaultstart(in, out-sv);

for (int out-sv -indexb = 0; out-sv-indexb < out-sv.sizeO; ++out-sv-indexb)
getControllerotransmit(outsV[outsv-indexb]);)))

void hierarchy: :Defaultstart(StartSimulation in, vector<SetVertex2D>& out-sv) I .

void hierarchy:: setuphierarchyDefaultstart(StartSimulation& in, vector<SetVertex2D>& out-sv)

for (ulong out svindex=0O out-svindex<out sv.sizeo; ++out-svindex)

if (!out sV[out svindex] .isPreemptedo) out Svllout svindex] .addDest(vertfout-svindex]);
if (!out sv[out Svindex].timeOverrideo) out sV[out Svindex].setTime((out Svindex*(- 1e-9)))

Figure 7-17 Relevant portions of hierarchyxcxx implementing message arrays

108

As with other type of arrays within the SODL language, certain aspects of output message arrays can be

initialized using the macro substitutions described in Chapter 6. Figures 7-16 and 7-17 depict the C++ code

resulting from processing a SODL construct with an output message array.

Here we again see the three relevant methods. The first is the receiver method sets up the output messages,

though this time it is in the form of an array. This array along with the input message is passed to the user-

defined message handler where the message array elements are manipulated. The messages are then passed

to the setup routine to undergo final addressing and time stamping. Note again the macro substitution of

'outsvindex' for the'@' in the original node declaration.

109

110

Chapter 8. GLUT-Based User Interface

8.1. Output concerns in an optimistic simulator

Optimistic simulation requires that all process states be recoverable in the event of a rollback. While this

may be useful for actually performing the calculations associated with the simulation, it has its drawback in

the vital area of 1/0 operations.

Output operations in particular are inherently irrevocable, and therefore must be handled differently from

the actual simulation system. For simple console or file output, the SODL system provides the

fossilCollect method. Suppose the LPi(ts) process state is being fossil collected. Then t,<GVT meaning

that all remaining messages in the simulation system have time stamps strictly greater than ts. Therefore,

any output file or console output we would have liked to perform in LPi(t,) can be safely performed during

fossil collection without the risk of it ever becoming invalid.

The SODL graphics sub-system, known as the GLUT View Manager (GVM) uses a buffering mechanism

to store pending changes to a scene graph. Those changes are made during fossil collection, and can be

rolled back if the need to do so arises before actually being committed to the output device.

8.2. Overview of the SODLIGVM subsystem
SODL Graphics---

GVM Graphics1

SODL Graphics --- G---GVM Graphics

Process Object

SODL Graphics ---- ------------------------------- ----- GVM Graphics

Process ObjectO

SODL Graphics ------- ----------------- GVM Graphics
Process Object

process Obec

Figure 8-1 Depiction of relationship between SODL processes and GVM objects

The means by which graphical displays are generated within the SODL system is a mixture of SODL

process and message constructs, and a collection of C++ classes that make up the GVM. The SODL

111

process and GVM object instances can be thought of as mirror images of each other. SODL provides a

collection of process and message constructs that allow programmers to specify their intent with regards to

graphical output. This intent is then communicated to the GVM portion to actually implement those

requests in a manner that is consistent with the notions of optimistic simulation, namely that output not

occur until it is certain that it cannot be revoked.

Figure 8-1 depicts in somewhat more detail the notion of this SODL process-GVM object association.

Each SODL process sends messages to any view processes in which it has been registered when it receives

a request to change one of its parameters. The SODL view process then forwards to its GVM view object a

request to update the actual GVM object responsible for rendering the object in the display. During fossil

collection, this change is finalized. The next time the scene is actually drawn, the change is reflected on the

screen.

SODL View -
Process

renderedD scnamsaemsP esn oeSD rocess beingate change coVesonin toheGV

rb .et with GVM objects pProcess view

ihaaredrObject corsodnVoislftinomtoevew ftecag.Toewmsaesms

Change
Request f to vOLiew

orwarded Process
S e

updated Ve

Figure 8-2 Message propagation for scene update requests

Figure 8-2 shows how updates are made to the scenes actually rendered. In order to see a change in the

rendered scene, a message must be sent to the SODL process being changed corresponding to the GVM

object being changed. This message is buffered and sorted according to its time stamp, possibly causing a

rollback. When it is delivered, the receiving process will generate a message for each of the views in which

it has a rendered object corresponding to itself to inform those views of the change. Those messages must

also be transmitted, buffered and sorted before delivery to the view process responsible for a particular

112

output display. Each view then schedules the change to occur in the actual rendered scene during fossil

collection.

One drawback of this approach is that it is a bit slow. However, given the constraints of the SODL system,

and ill-fated attempts at other approaches, this seemed the best way to solve the problem of providing a

flexible output capability that could be, from the programmer's perspective, distributed across a collection

of host machines.

Although not implemented in the current SODL system release, this approach provides a way for users to

communicate with processes corresponding to objects in the rendered scene. There is considerable work

remaining to get this to happen, but it is a natural extension of that already done in this area.

8.2.1. SODL/GVM scene graphs

At the core of the GVM sub-system is the scene graph. The notion of a scene graph is described in more

detail in (Foley 1996), but we will provide some basics here. In 2 and 3 dimensional graphics output,

polygons are displayed to the screen, after having been manipulated by an affine transformation. These

affine transformations are actually implemented as matrices that when multiplied together cause a

succession of transformations to take place 1 . For example let v be a vector and let A, and A2 be affine

transformations. Then the process of applying A, to v then A 2 to that result can be expressed as the

multiplication sequence A2.AI.v. These affine transformations can perform a number of functions, but

among the most common are translation, rotation, and scaling. When combined in different orders, these

transformations can be used to manipulate polygon vertices in very complex manners.

The GVM scene graph can be thought of as a tree structure. Internal nodes are affine transformations, and

leaves are polygons or other shapes. The affine transformation at any point in the graph is the product of

the affine transformations in all of the ancestor nodes up to the root. When a given polygon is displayed to

the screen, the affine transformation applied to its vertices is the product of all those transformations in the

ancestor nodes.

113

An example of this relationship is depicted in Figure 8-3. Each internal node in the tree in Figure 8-3

represent an affine transformation labeled A,. This affine transformation is appended to the list of

transformations from the parent nodes, and is explicitly shown as the second line in each of the internal

nodes. Each vertex in polygon Py is then multiplied by the aggregate affine transformation to get its final

location in the rendered scene.

A2 A3 P4A4
Ai.A2 ArkA Ar.A,

,A 2 Az.As A .A 3.A6 AA3A7 A8A4 A h A.A 4A9

An A

AAA7boP7A*A*A.A~sAiA 4A8An iP99P

Figure 8-3 Sample scene graph; Affine transformations are Ax, polygons are Py

What this accomplishes is that objects displayed to the graphics device can have a hierarchy of sorts

allowing individual components of a larger structure to be moved around with that larger structure. If the

smaller components are capable of moving with respect to the larger structure, adjusting the affine

transformation parameters affecting only the smaller component will cause such movements to appear in

the final rendered scene.

The complication that GVM must contend with is that a simulation system may periodically send

instructions to the GVM viewer to change some aspect of the scene graph. This implies that each of the

objects associated with a specific view need to be able to receive messages, making them like processes. It

might also be useful to be able to have a single SODL object correspond to objects displayed in multiple

views of the same scene. 12 Therefore, a change in one affine transformation node could affect scenes

" Matrices are by definition linear transformations. It is possible, by adding an additional dimension to get

them to mimic affme transformations in the lower dimension. A thorough description is available in any
reference on computer graphics, but notably (Foley 1996)
12 This would be particularly useful in a distributed implementation of the SODL system, allowing the

scene to be displayed independently on different host computers in the distributed simulation.

114

rendered in more than one view. Since the intent was to provide a distributed simulation capability, direct

manipulation of a view's scene graph cannot occur, since, in such distributed implementations, the scene

graph may not reside locally.

What GVM has done is to have two separate but identical scene graphs. The first is the one that can send

and receive messages, and is therefore actually implemented as a collection of SODL process and message

files. Programmers making use of it send messages to these processes which forward requests to modify

the scene graph in the actual view where the scene is rendered; this is the second scene graph. The SODL

processes must retain all of the state information that is in the rendered scene, so that if a graphics object is

added to a new view, it can inform that view as to its state and any subordinate objects it may own.

GVM rendered scene - View B

SODL scene graph

GVM rendered scene - View A

GVM rendered scene - View C

Figure 8-4 Portions of SODL scene graph displayed on multiple views

Figure 8-4 provides a pictorial representation of the GVM architecture. Depicted here is the SODL portion

of the scene graph at the center of the figure. Portions of the SODL scene graph are replicated on different

rendered scenes in different views. An update in one of the SODL objects will propagate to all of the

scenes in which the object has corresponding rendered objects. The end result is that programmer does not

need to manage the details of the individual scenes rendered, but can instead manage where different

objects are viewed, and the relationship between the various rendered objects.

115

8.3. SODLIGVM usage
To actually make use of the SODL/GVM system, programmers need only declare in their process

constructs a process:View derived instance, along with the affine transformation nodes and shapes to

actually display.

There are two types of process:View constructs defined, process:View2D for displaying two-dimensional

information and process:View3D for three-dimensional displays. Programmers should use either of these

two process constructs, or derive new ones based upon their specific requirements. The view can be

considered the root node, and contains the affine transformation for the view orientation and position. This

viewing transformation is then applied to all subordinate nodes.

Each view can have a collection of subordinate nodes. These are either process:Node2D or

process:Node3D instances, as appropriate. The only real difference between them is the size of the various

arrays they have governing the affine transformations they represent. They have the ability to govern

translation, scaling, and rotation. The center of rotation and center of scaling can also be specified. To add

a node with process handle (N,, I,) to a view with process handle (N,, Iv), a user sends a

message:AddNode2D or message:AddNode3D (both derived from the message:AddNode construct) as

appropriate, to (N, Iv). The message:AddNode derived messages have the ability to add multiple nodes.

To load the message, call its method:add(public; void; process:p) method to add a sodl::process value to

the list of them. These added values are the process handles of the nodes we would like to add as

subordinates to the destination.

A process:Node instance can reside on multiple views. To do this, simply send one of the

message:AddNode derived constructs to each view instance where the process:Node is intended to reside.

The system provides the capability to, not only add process:Node instances to a process:View, but also to

other process:Node instances. We can use the message:AddNode derived constructs for this as well,

though we send it to the process:Node construct instance that will be getting the new subordinate

process:Node instances. Any view in which the receiving node has been registered will automatically be

informed about the addition of the new subordinate.

116

{import process {View3D, Node3D, Dodecahedron} }
{import message {AddNode3D, AddShape3D, StartSimulation} }

process:dode
{

View3D:view; //Display to this view
Node3D:root; H Node for the display
Dodecahedron:shape; H A dodecahedron to view

mode:Default
{

node:start-sim [StartSimulation:strt] //Bootstrap message
[AddNode3D:an=>(view;), H Add root to view
AddShape3D:as=>(root;)] H Add shape to root

an.add(root); //Set the root node as a subordinate of the view
as.add(shape); H Set the shape as a subordinate of the root node

}
}

Figure 8-5 dode.proc, a simple view with a single affine transformation node and shape

There are several predefined shapes for the three-dimensional views. They include process:Cone,

process:Cube, process:Dodecahedron, process:Icosahedron, process:Octahedron, process:Polygon3D,

process:Sphere, process:Tetrahedron, and process:Torus. All of these are derived from the

process:Shape3D construct. With the exception of the process:Polygon3D, all of them are fixed in terms

of their vertices and edges. The process:Polygon3D construct can have subordinate process: Vertex3D

constructs, the position of which can be changed via message passing. There are some limitations to how

these vertices may be used. Specifically, in certain OpenGL drawing modes, the locations of all of the

vertices must be coplanar and form a convex polygon. Since all polygons can be decomposed into a

collection of convex polygons, this is more of a nuisance than a real limitation of the system. For two-

dimensional views, the only predefined construct is the process:Polygon2D, which has the same

limitations as the process:Polygon3D, and restricts ownership to only process: Vertex2D.

117

To add a shape to a process:Node, send the appropriate message'AddShape derived construct (either

messageAddShape2D or message:AddShape3D) to the node to which the shapes will be subordinated.

Again, the addition of this new shape will be forwarded to all views in which the node has been registered.

tj -: ,I

Figure 8-6 Output of dode.proc

Figure 8-5 has code for displaying a simple geometric shape in a process:View3D window. Figure 8-6

shows the output for the program in Figure 8-5.

8.4. SODLIGVM Architecture

Detailed descriptions of both the SODL and GVM portions of the display subsystem are documented in

Appendix B, sections 3 and 4 respectively. We provide a somewhat broader overview here to help

programmers wishing to use the system to do so effectively.

As stated earlier, for each SODL process used to control display content, there is an associated GVM class

to actually manipulate and display the scene graph. The programmer only needs to send messages to the

SODL side of the system. The updates to the displayed scene are handled at first within the SODL system,

and then passed to the GVM portion where these update requests are buffered until fossil collection.

During fossil collection, the requests are used to actually perform updates to the scene.

118

8.4.1. SODL view controllers, the process:View

From the SODL perspective, a single process:View instance controls exactly one GLUT view port. All

objects displayed in the window, down to the individual vertices making up polygons, must be registered

with the process:View instance associated with the GLUT window displaying them. All such objects are

derived from the process:Object construct. This registration takes two forms. The first is to have a

process:Node instance be added to a view's list of root nodes via the messages derived from

message:AddNode. The second is to have a parent object be registered with a new view, in which case all

subordinate objects in the scene graph are also registered.

SODL views come in two flavors, process:View2D and process:View3D instances. Programmers should

not directly instantiate a process: View, since much of the functionality associated with manipulating views

is implemented only in these two derived classes. The process:Node instances should be instantiated as

either process:Node2D or process:Node3D for essentially the same reason. process:View2D and

process:Node2D instances are used for controlling two-dimensional display data, while process:View3D

and process:Node3D instances are for three-dimensional displays. The reason for this separation is that

OpenGL can perform some optimizations for 2D displays making display of such data somewhat faster

than it would otherwise be.

Figure 8-7 depicts how this registration is actually performed. The first step in the process comes when a

request is made of a process: View instance to add a new root node to its list of them. The view maintains a

list of known process handles, and checks to see if the handle for this process:Node instance is among

them. If not, the process:View schedules the creation of a corresponding gvm::Node instance with the

gvm::View instance it maintains. This returns a gvm index value that can be used to identify that specific

gvm::Node instance in the future. With this gym index in hand, the process:View sends a

message:AddView to the node it has just added. Included in the payload of the message is the gvmjindex

value. Any messages the process:Node sends to that specific view must contain the proper gvmjndex

value so that instructions can be properly forwarded to the node's counterpart in the rendered scene graph.

Therefore, the node maintains an associative memory with the handle for the process:View as a key and the

gvm index as its value and uses the index in any future communications with that view. Not depicted in

119

Figure 8-7 is the message process:Node sends back to the view. These messages notify the view as to the

current state values of the node so that the proper values are relayed to the gvm::Node instance when it is

created.

message:AddNode # 1

process: View # I gvm::CreateObjeet gvm::View #1

process:Node #1I msaedre Node # 1_I

(a) View #1 receives request to add Node #1 as a root node. Sends AddView #1 to Node
#1 and schedules creation of a corresponding node with its gvm:: View instance

~proeess ode # I

message:AddView #1 gm: :CreateObject
Shape #1

(b) Node #1 receives request to add Shape #1 and sends Register Shape #1 to View #1
which schedules with its gvm:: View creation of a corresponding shape and
establishment of subordinate relationship; sends an Add View #1 message to Shape #1

Figure 8-7 SODL side messaging

When a new shape is added to the list of subordinate objects for the node, essentially the same procedure is

repeated. This time, the node sends a message:RegisterShape to the process: View instance along with the

process handle of the shape to add. Again, the process: View will check its list of known processes, and if

the handle is not yet registered, it will schedule a gvm::CreateObject event with its gvm::View to actually

create the new shape instance. It also will schedule an update in the scene graph to add the newly created

gvm::Shape instance as a subordinate shape to the gvm::Node instance it created earlier. The

process:View instance will then send its message:AddView to the new shape, along with the gvm-jndex

returned from scheduling the gvm::CreateObject. The shape retains the gvmlindex for use in any future

communications with the view. Again, not pictured is the phase where the newly registered shape relays

back to the process: View its state data so that additional gvm::Message instance can be scheduled with the

gvm::View to provide current state information to the scene graph.

120

The same basic idea is used any time the state of a process:Object derived construct instance changes its

state. It will forward a message to the views with which it has been registered, along with the gvmjindex

value for that view, notifying it of the change in its state. The process:View will schedule messages with

the gvm:: View notifying it of the change in the scene graph state.

8.4.2. Messaging on the GVM side

oq 0

- - o ~ O 00 -

I I I --- ! -

.. .. ,.

(a) At LVT 13.5, the gym: :Set Translation event was

scheduled in the gvm::View instance by adding the event to
the front of the deque.

II

.. . •.

(b) A rollback occurred restoring the state with time stamp
8.6. Events schedule for 11.0 and 13.5 were removed from
the deque.

* I

Figosi 8-8 fe i ting mesas inrthed Thes

121

registered with the process: View instance, these changes must be reflected in the scene graphs that are used

to actually generate imagery to graphics output devices. However, each of these requests must occur in the

proper time stamp order, and, since there is no guarantee that they are actually received in the proper order

until fossil collection can be performed, it is only at that time that these changes to the scene graph can

actually be committed.

There are three phases to the GVM side of the graphics subsystem as depicted in Figure 8-8.

1. Scheduling. All events are time stamped and, by virtue of the optimistic simulation
mechanism the SODL system uses, are inserted into the front of a double-ended queue
(also called a deque) in time stamp order.

2. Rollback. Since the messages are inserted into the deque in time stamp order, the
messages can be removed from the front of the deque until the front most element has a
time stamp not greater than the rollback time. Any events scheduled for a later time will,
by definition be of a later time stamp value, thus the chronology of scheduled scene graph
adjustments remains intact.

3. Fossil collection. All events with time stamps at or before the fossil collection time can
be processed, allowing the scene graph updates to be made without the possibility of a
rollback making those changes invalid.

122

Chapter 9. SODL Sample Programs

The main advantage of the SODL system is that it provides developers with the means to quickly and

succinctly define the behavior of simulation objects without being bogged down with the details normally

associated with simulation systems. As a means of providing some insight into how the SODL system

works, and how it may be used to rapidly develop complex simulation systems, this chapter will explain in

detail how the various demonstrations that come with the SODL distribution work and what they are

intended to do.

Many of these samples produce output, but for brevity, the code segments listed here generally do not show

how this out is actually produced. Complete listings of all of the demos and support code (if necessary) are

provided in Appendix C.

9.1. Single Node Textual Simulations
These simulation are early demonstrations intended to test various aspects of the SODL system when all

the simulation objects residing on the same engine. There is, therefore, no chance of ever getting a

rollback, and the fossil collection is trivially completed. They are not intended to simulate anything in

particular, just provide some basic samples for testing and illustration purposes.

9.1.1. Simplel

The Simple 1 simulation, depicted in Figure 9-1, with constructs listed in Figure 9-2.

process:Simple

message:StartSimulation

mde:tartmessage:Generic

message:Generic

Figure 9-1 Schematic of Simplel

The purpose of this simulation was to test the basic message passing mechanism in the simplest possible

configuration. A process:Simple instance upon start up (i.e. receipt of the message:StartSimulation

123

instance at time -1) will send a message:Generic with time stamp 0.0 to itself. Every time it receives a

message:Generic, it transmits another one to itself, and increments a counter. Upon receiving 100 of these

message:Generic instances, the 10 1 "t instance has its transmission flag turned off, preventing actual

transmission of the message.

I message: Generic;) I
(a) Generic.msg

(import message (Generic, StartSimulation}
(import std {<iostream>} I

I
process: Simple

int:count(-1); HI Hit counter

method:init~public; void;) I std: :cout.precision(l 5);}

method:fossilCollect(public; void;)

if (getTimeo >= 0) IIf this is a good time to produce output?

if (getTime() == 0) std: :cout << me << ": starting";
else std::cout << me << @:"cut« time << getTineo;
std::cout «< std::endl;

mode: start

node:proc[StartSimulation:strt] [Generic:om=>(me;):(0.0)]
I start. setActive(false);}}

mode:run

node :proc[Generic:im] [Generic:om-->(me;)]
I om. setTX(++count < 100); 1

(b) Simple.proc

Figure 9-2 The Simplel Simulation

The process starts out with all of the modes active. After the initial bootstrapping message is received,

modewsart is deactivated so that the nodes within it are no longer polled for the remaining messages. All

remaining messages are handled in mode:run.

124

After each message is received, during the fossil collection phase, the process produces textual output to

the screen to inform the user of the status of the simulation. Since there is only one process, and the

possibility of a rollback is exactly 0, this output could have been handled in the node receiving the

message:Generic instance. It is, instead placed in the method .fossilCollect to maintain the intent that

output only be performed during fossil collection.

9.1.2. Simple2

Simple2 is in essence the same as Simplel, but was developed to test for memory leaks in the basic

scenario. Its primary difference is that it does not end until the user manually terminates the run. To limit

the amount of output sent to the screen, it produces output once in 10,000 iterations, rather than after each

iteration as in Simplel.

The functionality of Simple2 is depicted, like that of Simple 1, in Figure 9-1, and it uses the same definition

of message:Generic, depicted in figure 9-2. The code running the process is depicted in Figure 9-3.

{import message {StartSimulation, Generic} }
{import std {<iostream>} }
{

process:Simple
{

long:count(-1); H Counter

mode:start
{

node:proc[StartSimulation:in] [Generic:out=>(me;):(0.0)]
{ start.setActive(false); }

mode:run

{
node:proc[Generic:in][Generic:out=>(me;)] { count++; } } } }

Figure 9-3 Process construct for the Simple2 simulator

9.1.3. Simple3

The Simple3 demo is an example of a two-process simulation, and is depicted in Figure 9-4, with code

displayed in Figure 9-5. The process:Simple declares a process:Child instance. Upon bootstrapping and

some initialization to inform the child process who its parent is, message:Generic instances are passed

back and forth between the two process instances ad infinitum.

125

message:SlartSimulationspoesSml

message:SetParent
message:Generic -

mode~tartmessage: Generic

Figure 9-4 Message transport in Simple3

(import message (StartSimulation, Generic, SetParent}
(import process f{Child)

process:Simple

long:count(-l); HI Counter
Child:child; HI Child process

mode: start

node: start[StartSimulation: strt]
[Generic:out->(child;):(O.O), SetParent:sp=>(child;)]
{ start. setActive(false); I)

mode:run f node:bounce[Generic:] [Generic:out-->(child;)] { count++;}}}}

(a) Simple.proc

{import message I{SetParent, Generic)

process:Child

process:parent; HI Handle to the parent process
long:count(-l); /1Counter

mode: start

node: setParent[SetParent: in] [

parent = in.getSourceo; IH Set the parent reference
start. setActive(false); H I Turn this mode off

mode :run

node:bounce[Generic:in][Generic:out=->(parent;)] I count++;}}}}

(b) Child.proc

Figure 9-5 Simple3 process construct declarations

126

The message:Generic is as defined in Figure 9-2, and message:SetParent is essentially the same, though

its type setting ensures that when it is delivered to the process:Child instance, the sender can be retrieved

and saved for future reference.

9.1.4. Ping

{import message {Generic, StartSimulation} }
{import process {Pong} }
{

process:Ping
{

int:count(-l); H Count of the number of messages received
Pong:pong; //Something to send a message to

mode:start
{

node:start[StartSimulation:strt] [Generic:out=>(me;):(0.0)]
{ start.setActive(false); } }

mode:run
{

node:ponger[Generic:in] [Generic:out=>(pong;)]
{ out.setTX(++count < 20); 1 } 1

(a) Ping.proc

{import message {Generic} }
{

process:Pong
{

int:count(-1); H How many times have we received a message

mode:Default
{

node:pinger[Generic:in] [Generic:out=>(in.getSource0;)]
{ out.setTX(++count<20); } } }

(b) Pong.proc

Figure 9-6 Source code for the Ping demo

The Ping demo is similar to Simple3. Figure 9-7 depicts how messages are passed between processes, and

Figure 9-6 is the code for the Ping simulator. The main difference is that instead of retaining a reference to

the sending process of message:Generic instances, the follow-on message is simply returned to the sender.

As such, there is no message:SetParent to inform the subordinate process of its parent as there is in

Simple3. In addition, after each process has received 20 message:Generic instances, the simulation stops

127

automatically. This was an early demonstration to test the basic message passing capability of the SODL

system.

message:StartSimulation 1 oe:star

message: Generic

message: Generic
process:Pong

mode:Default

Figure 9-7 Ping message transport

9.1.5. Ringl

process:Subscription
n o processri Ring ofth Subscribecw to proid cassRinservi whereby

proesss culdsig upwit a ubsripionandanymesagesen toth s riogol uoaial

Sbbscriber t b t process:RingMember I

i Subscribere2 w r process:RingMember2

Subscriber3 process:RingMember3

[Subscriber 4 process:RingMember 4

Sbsrber 5 : process:Ringgember 5

ISubscriber 6 IA:Z proeess:RingMember 6

ISubscriber 7 k process:RingMember 7

ISubscribers 8 & process:Rn ebr8

I S ubs cr iber 9 IA, -'*'" process:RingMember 9

Figure 9-8 Ringl Token ring using a subscription service

One of the original intentions of the SODL project was to provide a subscription service, whereby

processes could sign up with a subscription and any message sent to the subscription would automatically

be forwarded to its membership list. In the end, this proved to be too cumbersome to adequately implement

in conjunction with the time warp algorithm, and this feature was dropped from the final system.

128

Ring 1, and Ring2 are two demos that originally used these subscriptions. They have been re-implemented,

this time with the subscription defined as a process. Ringl consists of one controller process, called

process:Ring, a subscription process called process:Subscription, and 10 ring members, declared in the

process:RingMember construct.

During bootstrapping and initialization in the Ringl demo, each ring member is informed as to the process

handle of the subscription process. With this handle available, the ring members then request to subscribe

to the subscription. As the subscription receives each request, it replies with a subscription index.

Messages intended to be forwarded by the subscription can either be sent to individual subscribers, by

specifying the index in the incoming message, or to all subscribers, when the recipient index is not

specified.

{import process {RingMember, Subscription} }
{import message {Generic, StartSimulation, Setup, ReportSize} }

process:Ring
{

RingMember:ring[10]; H Ring of elements
Subscription:sub; //Subscription list

mode:Default
{

node:start[StartSimulation:strt]
[Setup:s=>(ring;),
ReportSize:r=->(sub;):(-0.5),
Generic:out-=>(ring;):(0.0)]

{ out.set(0); s.set(sub); } } } }

Figure 9-9 Ring.proc; The parent process for the Ringl simulation sample

Once this portion of the setup is completed, the process:Ring instance requests that the subscription

provide the subscriber count to all of the subscribers. Once this is completed, the real simulation starts.

129

{import message (Subscribe, ReportSize, ReportIndex, Generic)

process: Subscription

process: subscribers[]; HI List of subscribers

mode:Default
{ node: subscribe[Subscribe: in] [Reportlndex:out->(in.getSourceo;)I

{out. set(subscribers.sizeo); /Index value to report back
subscribers.push-back(in.getSourceo); }

node:reportSize[ReportSize:in] [ReportSize:out->(subscribers;)]
{out. set(subscnibers. sizeo);}

node:forwardiGeneric:in] [Generic:out]
{ if (in.get() < subscribers. sizeo)

out.addDest(subscribers[in.geto]);
else

out.addDest(subscribers);
out.set(in.geto); I) I

(a) Subscription.proc

{import message {Generic, Setup, ReportSize, ReportIndex, Subscribe) I

process:RingMember

process:sub; HI Handle to the subscription process
long:count(-1); I/A simple counter
long:next(O); H/Index of next instance
long:index(O); Index of this instance

mode:Default

node: setup[Setup:in] [Subscribe:out-->(sub;)] I sub=in.geto; I
node: setlndex[Reportlndex: in] [] I index--in.geto;)
node: setNext[ReportSize:in] [I { next =(index+1) % in.getfj; I

node:run[Generic:in] [Generic:out => (sub;)]

out.set(next); HI Set index of the eventual destination
out.setTX(count++<1O);) I))

(b) RingMember.proc

Figure 9-10 Processes controlling (a) the subscription service and (b) individual ring members.

130

The notion of Ring l is to perform a token ring simulation whereby a message is sent to the first element in

the ring, which sends a message to the second, and so on until it gets to the last element. This last element

will then forward a message back to the first. Rather than relying upon storing the handle of the next

process, each process:RingMember instance instead retains its index so it can figure out which subscriber

is next to get the message. The token, in this case another message:Generic instance is forwarded to

successive elements until it has made ten complete circuits of the ring. This final phase of the simulation is

depicted in Figures 9-8. Figures 9-9 and 9-10 contain the source code for the process constructs in the

Ringl demonstration.

The result is that each of the process:RingMember instances takes a turn receiving the token and passing it

to the next subscriber. No two ring members have a token at the same simulation time, so the sequence of

token passing is sequential, from one ring member to the next.

9.1.6. Ring2

process:Subscription

F r Subscriber 0 i process:RingMembersimult i 0o

Subscriber 1 process:RingMember I

Subscriber 2 ircs:inIme 2

SSubscriber 3 process:RingMember 3

Subscriber 4 process:RingMember4 I

[process:Ring Subscriber 5 process:RingMemberS 5

SSubscriber 6 process:RingMember 6 I

Subscriber 8 process:RingMember 8

Subscriber 9 process:RingMember 9

Figure 9-11 Message routing for Ring2 simulation

131

Ring2 is essentially the same as Ringl, except with regards to one minor change in the process:Ring

construct declaration. This change broadcasts the initial message:Generic instance to all of the subscribers

listed with the process:Subscription instance.

Figure 9-11 depicts the message flow following the setup portion of the simulation. Figure 9-12 shows the

code change in Ring.proc to result in this change. Note that we removed the outset(O) in node:start of

Figure 9-10. This directs the subscription to broadcast the message:Generic instance to all of its

subscribers.

(import process {RingMember, Subscription} }
(import message {Generic, StartSimulation, Setup, ReportSize} }

process:Ring
{

RingMember:ring[10]; //Ring of elements
Subscription:sub; H Subscription list

mode:Default
{

node: start[StartSimulation:strt]
[Setup:s=>(ring;),
ReportSize:r=>(sub;):(-0.5),
Generic:out=>(ring;):(0.0)]

{ s.set(sub); } } }

Figure 9-12 Ring.proc; The parent process for the Ringl simulation sample

9.1.7. Brigade2

The Brigade2 simulates a brigade of soldiers performing some unspecified task. The brigade is broken into

four battalions, which are in turn broken into four companies each. Each company is broken into four

platoons, and these platoons are each broken into four squads. Finally, each squad is composed of ten

soldiers. A quick computation reveals that there are, 2,901 units the simulation system must managed.

This hierarchy is illustrated in Figure 9-13.

During a setup phase, each unit sends a message to each of its subordinate units to establish with that

subordinate that the owning unit is its parent. Communication occurs only from one level to the next. That

is, a unit can communicate only with its parent unit and its immediate subordinates.

132

process:BigalI process:Catomalin proess:aCo o np process:Paoon

process:Squad

pr ocess:Soldier process:Soldier I pfsSodier F . f osSo'dier

Sprocess:Sodier pr ocess:Solder L.j~ssoder Llo33ssoder

pr *ocessSoder prLocess:oldier

Figure 9-13 Process ownership in Brigade2 demonstration

Parent Unit

-d t
.o W0 0 0

0i 0

Subordinate Unit Subordinate Unit Subordinate Unit

Figure 9-14 Communication between parent and subordinate units in Brigade2 demo

When the simulation actually gets under way, the brigade issues an order with different randomly

determined time stamps to each of its subordinate battalions. These battalions then issue orders to each of

their subordinate companies, again a random time stamps. This continues all the way down to the

individual soldier units. After a period of time, the soldier will report to its parent unit that it has completed

its task. When all of the soldiers in a particular squad have informed it that they have completed their

assigned tasks, the squad will report this back to its parent platoon, and so on. The simulation ends when

the brigade has completed its task. This is illustrated in Figure 9-14.

The bulk of the work is done in the process:Unit construct. All of the process constructs in the Brigade2

demo are derived from process:Unit, which is summarized in Figure 9-15. process:Soldier is shown in

133

Figure 9-16 since it is fundamentally different from other units, in that it does not have any subordinate

units.

{import message {report, order, set_parent, StartSimulation} }
{

process:unit
{

int:instance; // Subordinate instance of this unit
int:sub count; H # of subordinates Squad/soldier needs to change to 10/1
process:parent; H Parent unit
process:subs[]; //Handles to subordinate units
double:subtimes[]; //Timestamp for subordinate units

mode:start
{

node:setParent[set_parent:in] [setparent:out[]=>(subs[@];)]
{

//Perform unit & subordinate initialization
start.setActive(false); H Deactivate start mode
waiting fororders.setActive(true); // Activate waiting for-orders

mode:waitingfor-orders
{

node:startSimulation[StartSimulation:in] []
{ waiting for-orders.setActive(false); }

node:receive[order:ord] [order:out[]=>(subs[@];):(sub-times[@])]
{

H Non-soldier instances configure orders to subordinates
waitingfororders.setActive(false); //Not waiting
working.setActive(true); } } //We are now working

mode:working
{

node:startSimulation[StartSimulation:in][] { working.setActive(false); }

node:status [report:in] [report: out=>(parent;)]
{

H Check to see if all subordinates are done
/If not set transmission flag in out to false

Figure 9-15 Unit.proc; Basic unit construct in the Brigade2 demonstration

134

{import process {unit} }
{import message {order, report} }
{

process:soldier(unit)
{

mode:waitingfor-orders
{

node:receive[order:ord] [report:out=>(me;):(subtimes[O])]
{

//Set report time to some random point in the future.

Figure 9-16 soldier.proc; Declaration of the process:soldier construct in the Brigade2 demo

9.2. Multiple Node Textual Simulations
The multi-node samples were developed to test the Time Warp mechanism for synchronizing nodes in a

distributed simulation system. They are, like the single node examples in the previous section, rather

simple, and serve primarily as a test of the underlying system.

9.2.1. Relayl

Relayl is a simple reflector demo similar to the Ping demo described above. The main difference is that

the two processes reside on different simulation engine instances. Figure 9-17 shows a simple schematic of

the Relayl demo. Figure 9-18 contains the relevant code segments.

Note that the process:relay construct is derived from the process:reflector, so that the behavior of

bouncing message:generic instances back to the sender is inherited in process:relay. Also, in the

declaration of the process:reflector instance in the process:relay construct, the affinity specification forces

the subordinate reflector to be instantiated on simulation engine 1. The process:relay is the root process,

and is therefore instantiated on simulation engine 0.

message:StartSimulation mesgegnei
loe sa e:S ar~ im l --o process:relay 1 m essage:generic I process: refl ector

message:generic

Figure 9-17 Message routing in the Relayl demo

135

{import message {generic} }

process:reflector
{

int:count(-1); H Count of the number of messages received

mode:Default
{

node:reflect[generic:in] [generic:out=>(in.getSourceo;)]
{ count++; } } } }

(a) reflector.proc

{import message {generic, StartSimulation} }
{import process {reflector} }

I
process :relay(reflector)
{

reflector:r: 1; //Something to send a message to on simulation engine 1

mode:Default
{

node:start[StartSimulation:strt][generic:out=>(r;):(0.0)] { } } } }

(b) relay.proc

Figure 9-18 Source code for Relayl process constructs

9.2.2. Relay2

Like the Relayl demo, Relay2 has two processes that reflect messages between each other. The

bootstrapping phase consists primarily of establishing a partnership between the two processes. This

involves the root process, which is a process:relay construct, transmitting a message to its subordinate

process:reflector instance that the two are partners (i.e. it informs the subordinate that it makes up the other

half of the system). After this, the root process issues a message with time stamp 0.0 and sends it to the

subordinate process instance. Upon receipt of a message:generic instance will return another

message:generic instance to the sender. It will also send a message:generic instance to itself. Both of

these messages have time stamps at some random time in the future. There is no termination condition in

the program, so it theoretically can keep going forever.

136

What we end up with in this demonstration is a situation whereby for each message processed, two are

generated. While this may be fine for abstract analysis, it will eventually cause problems with system

memory as the number of pending messages grows linearly with the number already processed.

Figure 9-19 illustrates how the process instances interact. Figure 9-20 is the relevant code in the two

process constructs.

message:StartSimulationmesggeri

message:generic message:generic

Figure 9-19 Relay2 demo message routing diagram

{import message {generic, setjpartner, StartSimulation}
{import process {reflector}

process:relay(reflector)

reflectormr 1; HI Something on another simulation engine to receive messages

mode:Default

node: start[StartSimulation: strt]

{p[O]=me; p[l]=r; I

(a) relay.proc

{import message (generic, setpartner}

process:reflector

process:p[2]; HI Pair of processes to send messages to

mode:Default

node: setPartner[setjpartner:in][{ p[0]=me; p[1]=in.getSourceo;}

node :reflect[generic:in]
[generic:out[2=>(p[@] ;):(getTimeo+random.nextDouble(l 0.0))]

(b) reflector.proc

Figure 9-20 Relevant code for the process:relay and process: reflector constructs

137

9.2.3. Relay3

{import message {StartSimulation, generic, setup} }
{import process {child} }
{

process:relay
{

child:children[1000]:@%100+1; /Distribute children evenly over 100 engines

mode:Default{
node:start[StartSimulation:strt]

[setup:s=>(children;), generic:out=->(children;):(0.0)]
{ s.set(children.sizeo, EngineStand::stand.engineCounto-1); } } } }

(a) relay.proc

{import message {generic, setup} }
{

process:child
{

ulong:cc; /Number of children
ulong:ec; H Number of engines

mode:start
{

node:relay[setup:in] []
{

H Setup cc and ed
start.setActive(false); } }

mode:run
{

node:relay[generic:in]
[generic:out:(getTimeo+random.nextDouble(1.0))]

{
ulong di = random.nextlnteger(cc); //Destination index
out.addDest(process(di%(ec-1)+l, di/ec)); } } } } //Set dest

(b) child.proc

Figure 9-21 Relevant code for the Relay3 sample

The Relay3 simulation has 1,001 individual processes distributed across 101 different engines. The only

process on engine 0 is the root process, a process:relay instance. The remaining 1,000 processes are

process:child instances evenly distributed across all of the remaining 100 engines. During initialization,

the process:relay informs all process:child instances of some basic information regarding the number of

processes and how they are distributed among the various engines. The simulation starts when the

138

process:relay instance sends a message:generic instance to all of the process:child instances. Each

process:child will, in response to a message:generic input send another message:generic instance to a

random process:child instance intended to be processed at some randomly determined time in the future.

The simulation will run until the user terminates it. While statistically the number of pending messages

should remain relatively constant, some engines may experience higher volumes of input messages than

others, thereby unbalancing the system, possibly leading to excessive memory consumption,

The purpose of this sample was to test the roll back mechanism and to ensure that large numbers of engines

were possible in terms of memory management issues. Figure 9-21 illustrates provides the relevant code

segments for the simulation.

9.2.4. Relay4

The Relay4 sample uses a subscription process to allow broadcasts to multiple processes without regard to

the actual membership of the subscription at the time the message is generated. This was initially used to

test the SODL subscription feature, but was modified to use a user specified subscription process when the

SODL subscriptions were removed.

There are seven processes in this sample. The only process:relay instance is the root process for the

simulation. There are in addition two process:subscription instances and four process:child instances.

Each process:child resides on a different simulation engine. During setup, each of the four process:child

instances is informed of the process handles of the process:subscription instances. Each process:child

then sends a message:subscribe to one of the process:subscription, which will add that child to the

subscriber list for that subscription.

Once completed, the process:relay instance will send a message:generic instance to both of the

process:subscription instances. This message will be forwarded to all of the subscribers of each

subscription, which should be each of the process:child instances.

139

import message {StartSimulation, generic, setup})
{import process {child, subscription}

I
process:relay
I

subscription: sub[2]; IISubscription instances for the program
child:children[4]:@; HI Child processes

mode:Default

node: start[StartSimulation: strt]
[setup:s=>(children;), generic:out-->(sub;):(O.O)]

{s.set(sub);}}}}

(a) relay.proc

{import message {generic, subscribe, unsubscribe}}
(import std f{<set>) I

process: subscription

std:: set<process>: subscribers; H/The list of subscriber processes

mode:Default

noe{usrb sbcie n II usrbr.isr~ngtore)
node:usubscribe[subscribe:in] [] subscribers.ase(in.getSourceo);

node:forward[generic:in][generic:out[]] I/Forward a generic message

out.push -back(in); II Copy the input message
out.backo.clearDesto; II Clear the destination list
std: :set<process>: :iterator i; HI subscribers iterator
for (i~subscribers.begino; i!=subscribers.endo; ++i)

out.backO.addDest(*i);}

(b) subscription.proc

Figure 9-22 Relay4 support process constructs

Upon receipt of a message:generic instance, a process:child will send three messages, each with randomly

generated time stamps, and each to a randomly selected process:subscription instance. The first message

is a message:subscribe, the second a message:unsubscribe, and the third a message-.generic. The

messagemunsubscribe will remove the sender from the subscription list for the receiving

process:subscription instance. The other messages will exhibit the behavior described earlier.

140

The simulation will run until there are no longer any messages to process, or until the user stops the

simulation. Relevant source code for the Relay4 sample is listed in Figures 9-22 and 9-23.

{import message {generic, setup, subscribe, unsubscribe} }
{

process:child
{

ulong:ct; //Number of children
long:di[3]; //Destination index
double:ts[3]; // Outgoing message timestamp
process:subscriptions[]; H Subscription process handles

mode:start
{

node:relay[setup:in]
[subscribe:sub=>(subscriptions [di[1]];):(ts[1])]

{
subscriptions = in.geto; //Get subscription handles
ct = ((ulong) subscriptions.sizeo); /Number of subscriptions
di[1] = random.nextlnteger(ct); H Join random subscription
ts[l] = -0.9; H Subscription event timestamp
start.setActive(false); } } //Turn off the start mode

mode:run
{

node:relay[generic:in] H Generic inbound message
[generic:out=>(subscriptions[di[0]];):(ts[0]),
subscribe:sub=>(subscriptions[di[1]];):(ts[1]),
unsubscribe:unsub=>(subscriptions[di[2]] ;):(ts[2])]

count++; / Log the reflection
for (long i=0; i<3; ++i) /Loop over the messages
{

di[i] = random.nextlnteger(ct); H Get destination
ts[i] = getTimeo+random.nextDouble(1.0); } } } } }

Figure 9-23 process:child construct declaration for Relay4 sample

9.2.5. Relay5

The Relay5 sample was developed to debug a portion of the SODL run time system involving the Time

Warp algorithm. There are three process instances, each on separate engines and all derived from the

process:base construct. The root process is a process:source instance, which sends message:generic

instances to itself and a process:relay instance it owns. In response, this process:relay then sends another

message:generic to a process:sink that it owns. The process:sink does nothing except act as a message

sink.

141

{import message {generic} }
{

process:base
{

long:count(-1); H Counter

mode:Default
{

node:routine[generic:in][] { ++count; } } } }

Figure 9-24 process:base construct in the Relay5 sample

(import process {base} }
{process:sink(base);}

(a) sink.proc

{import message {generic} }
{import process {base, sink} }
{

process:relay(base)
{

sink:s:me.getNodeo+l; H Sink for message stream instantiated of different engine

mode:Default
{

node:run[generic:in][generic:out=>(s;)] {} } } }

(b) relay.proc

{import message {StartSimulation, generic} }
{import process {relay, base} }
{

process: source(base)
{

relay:r:me.getNodeo+l; H Relay process instantiated on a different engine

mode:Default
{

node:start[StartSimulation:s] [generic:out=>(me; r;):(O.O)] {}
node:run[generic:in][generic:out=>(me; r;)] {} } } }

(c) source.proc

Figure 9-25 Code segments for instantiated Relay5 process constructs

The process:base construct, portions of which are listed in figure 9-24, provides support for a common

output scheme and message counter for each of the derived constructs.

142

Relevant code from the process:base derived constructs is shown in Figure 9-25. Figure 9-26 illustrates

how the messages are passed within the system.

message:StartSimulation ,1lp~essuc

Smessage:generic

process:relay

I message:generic

process:sink

Figure 9-26 Message routine in the Relay5 sample

9.2.6. Relay6

On the surface, Relay6 may seem to be a relatively simple simulation, and the code itself would seem to

confirm this. However, looking at a run of the simulation reveals some interesting dynamics that are not

immediately obvious. The original intention of this sample was to test the basic functionality of the

rollback mechanism to ensure that it was performing this task satisfactorily. It did this by running two

processes at different "rates" (by which we mean the virtual time between successive messages delivered to

each process was different) and then periodically sending a message from the slower process to the faster

one, thereby inducing predictable rollbacks.

There are two processes, each on separate engines and derived from the process:base construct. The

process:relay construct is the root process, and it sends a message:generic instance starting at time stamp

0.0. Upon receipt of a message:generic instance, the process:relay instance will send itself another at time

currenttime+0.1. Every tenth message:generic the process:relay receives will cause it to forward the

next message:generic to both itself and a subordinate process:sink. The process:sink, on the other hand

will, upon receipt of a message:generic issue another to itself with time stamp currenttime+1.0. This

message flow is depicted in Figure 9-27.

143

message:generic
current time+O.1

message:StartSimulation
• [process:rea

This switch opens every tenth I

message:generic invoking a
rollback on the process:sink. process:sink

I

message:generic
current time+1.O

Figure 9-27 Message routine in the Relay6 sample

{import message {generic} }

process:base
{

long:count(-1); // Counter

method:round(public; double; double:t;) { return floor(t*10.0+0.5)/10.0; }

mode:Default
{

node:routine[generic:in][] { ++count;} } } }

Figure 9-28 Relay6 process construct for the process:base

The process:base construct, portions of which are shown in Figure 9-28, governs output and counting to

provide some state information. It also declares method:round to eliminate minor differences in time

stamps that can occur between the two derived process time stamps.

The interesting dynamics comes into play when the number pending message:generic instances for the

process:sink instance begin to grow linearly with the number of messages it receives from the

process:relay. If not mitigated, there would be one pending message in the process:sink for every

message:generic sent to it from the process:relay.

This problem can be resolved by requiring the process:sink instance to send new message:generic

instances to itself only when sufficient time has passed since the last transmission. This check is performed

144

in the node:run declaration in process:sink, which sets the transmission flag to false when the last

message processed prior to the one currently under consideration has a time stamp that is too close to the

current timestamp. Relevant code for the process:base derived classes is shown in Figure 9-29.

{import message {generic, StartSimulation} }
{import process {base, sink} }
{

process:relay(base)
{

sink:s: 1; /Sink for the message stream
ulong:ct(0); H Counter

mode:Default
{

node:start[StartSimulation:in] [generic:out=>(me;s;):(0.0)] { }

node:run[generic:in] [generic:out=>(me;):(round(getTimeo+0.1))]
{ if (++ct%10==0) out.addDest(s); } } } } //Send to s every 10 times

(a) relay.proc

{import message {generic} }
{import process {base} }
{

process:sink(base)
{

double:lt(-1.0); / Time stamp of last message:generic received

mode:Default
{

node:run [generic:in] [generic:out=->(me;):(round(getTime0+ 1.0))]
{

out.setTX((getTime0-1t)>0.0 1); H Stop rampant messaging
lt=getTime0; } } } }

(b) sink.proc

Figure 9-29 Relevant Relay6 code segments

9.3. GLUT based demonstrations
The GLUT demonstrations are somewhat more complex than demonstrations discussed thus far. This

complexity is largely the result of having to create and mange the scene graph on the SODL side.

One of the main problems with the basic GLUT View Manager (GVM) is that in order to display properly,

the simulation engine must schedule screen updates. All of the SODL processes that have potential input

are required prior to updating the display, to post updated information about their state to the GVM. This

145

takes place in the form of messaging, and becomes quite time consuming for event relatively few objects

on the screen. Some of the samples below augmented the basic GVM to reduce these periodic redraw

cycles to only one message, instead of the hundreds or thousands that would have otherwise been

necessary.

9.3.1. Bouncel

" ..

* **. .

Figure 9-30 Output from Bouncel demonstration

The Bouncel demonstration depicts a cube with a collection of particles bouncing around the cube's

interior. A sample output is provided in Figure 9-30. The simulation consists of a process:bounce

instance.

146

{import message {hit, start, grupdate, SetVertex3D, AddVertex3D, SetSystem} }
{import process {Node3D, Vertex3D} }
{

process:particle
{

Vertex3D:vrt; H Screen vertex
double:pos[3]; // Position vector
double:vel[3]; /Velocity vector
double:nextTime[3]; /Next impact times for each axis
double:time(O.0); H Time for the last velocity change

method:init(public; void;) /Initialize particle position & velocity
method:setNextHitTime(private; void; int:i;)// Get next hit time for axis i
method:move(private; void;) H Move particle to "current" position
method:getMinAxis(private; int;) H Return axis which will next have a collision

mode:Default
{

node:start-sim[start:s] [hit:out=>(me;):(nextTime[out.axis])]
{ out.axis = getMinAxiso; } // Schedule first collision

node:update[grupdate:in][SetVertex3D:out=>(vrt;)]

{
moveo; H Move the particle to the current position
out.set(pos); } //Update the vertex position

node:change[hit:in] [hit:out=->(me;):(nextTime[out.axis])]
{

move0; H Move particle to current position
vel[in.axis] = -vel[in.axis]; // Change particle the velocity
setNextHitTime(in.axis); H Set next hit time for the specified axis
out.axis = getMinAxis0; } } } } H Axis for the impact

Figure 9-31 ball.proc; Code governing ball motion and scene graph update

The user interface is a process:View3D instance, and includes a system defined process:Cube instance as

well as a process:Polygon3D used to actually display the particles in the cube's interior. The simulation

mainly concerns itself with the 200 particles bouncing around the interior of the cube. These particles, the

behavior of which is declared in the process:particle construct, each have a process:Vertex3D that is

added as a subordinate to the process:Polygon3D instance. As the simulation proceeds, the particles

schedule the next "bounce" they have as a message:hit instance. The root process also schedules periodic

updates of the scene, and broadcasts to all of the process:particle instances to report their position to the

view so that the scene graph may be updated.

This leads to some problems with respect to performance, and points to areas where the SODL system has

some limitations. In this instance, since each particle is responsible for explicitly updating its position in

147

the view for each frame, there is a great deal of message traffic. Each process:particle instance, in each

frame first must receive a request to update the scene graph, then forward an updated position its

process: Vertex3D instance. From there, another message is forwarded to the actual view. The view then

schedules an update to the scene graph in the form of yet another message. This final message queue has

messages inserted in time stamp order, so no sorting is necessary. However, each of the other messages

must be generated and processes in chronological order. This in turn needs to be done for each particle, in

each frame, leading to a reduction in the overall performance. Relevant code for the process:particle is

shown in Figure9-31 and message transmission is depicted in more detail in Figure 9-32.

process:bounce

message:gr update

message:hit prcess:particle

I pro message:SetVertex3D

process: Vertex3D I

message:SetVertex3D

process: View3D

Figure 9-32 Messages for screen update in Bouncel demo

9.3.2. Bounce2

The Bounce2 demo looks somewhat similar to the Bouncel demo described above. It differs primarily in

the load distribution between the SODL simulation engine and the GVM graphics engine.

The Bouncel demo suffered from substantial performance degradation because each particle was required

to provide the graphics engine with explicit position updates. This required an additional two messages per

frame per particle.

There is in essence nothing changing between successive particle-wall collisions. The velocity of the

particles remains unchanged between successive bounces, and a quick calculation based upon the location

148

and time of the last bounce as well can accurately determine the location of the particle for anytime prior to

the next bounce. The Bounce2 demonstration takes advantage of this by offloading these computations to

an extension of the GVM. None of the scene update messages necessary in the Bouncel demo are

performed in Bounce2. The only events scheduled (after initialization) are for the particle-wall collisions,

and periodic update requests to display the scene graph at the next time interval. The result is a significant

improvement in performance.

Particle Count Bounce] CPU time (seconds) Bounce2 CPU time(seconds)
1 2.202 1.876
5 1.938 1.765
10 1.766 1.906
50 0.704 1.876
100 1.375 1.876
500 10.94 1.890
1000 33.03 1.313
5000 Not Calculated 2.750

Table 9-1 Performance comparison of Bounce demos

The performance measurements displayed in Table 9-1 are taken from successive runs on a dual processor

700MHz Pentium III based computer system with an nVidia GeForce 256 based graphics card which

provides hardware acceleration to perform geometric transformations. The tests were performed under the

Windows 2000 SP1 operating system with the size of the window in which the simulation was displayed

set to 800x600 pixels. The results shown are based upon 10 seconds of simulation time, amounting to

about 400 rendered frames. The times listed do not include simulation initialization and process

dependency setup. The image in Figure 9-33 shows the Bounce2 demonstration with 2,000 particles.

Figure 9-34 shows the manner in which the messages are passed, and 9-35 the relevant code from the

process:particle construct.

There were sufficient computing resources remaining to adjust the simulation somewhat and to incorporate

gravity into the demonstration, as well. Thus, the particles in the final Bounce2 demonstration undergo

parabolic motion. This feature was disabled during the test runs highlighted in Table 9-1.

149

16

- do .4 *I *. 4

14.- -- "-.

Fiur 9-3 Boue oupu wih200 atce

mes g~ i. II I .'.r . * c ,- * .*

7 i*.*...I :Se. I..on

proces:View .

Fiur 9-3 Messaging to upat th cn *rphi o

* I ***150

(import message f{hit, set -motion, SetVertex3D, StartSimulation, AddVertex3D, AddView} I
f{import process {Vertex3D}}
f{import std {<vector>} I
{import f{"Exception.h"} I

I
process:particle(Vertex3D)

f
double:vel[3]; HI Velocity vector
double:acc[3]; // Acceleration vector
double:nextrime[3]; H/Next impact times for each axis
double:time(O.O); HI Time for the last velocity change

method: init(public; void;) I .. IIH Initialize the particle motion parameters
method: setNextHitTime(private; void; int:i;) f ..)IH Get next hit time for axis
method:move(private; void;) I ...) HI Update particle state to current time
method:getMinAxis(private; int;) H I Get the minimum time axis

mode :Default

node: start[StartSimulation: s] [hit:out-->(me;):(nextTime[out.axis])]
I out.axis = getMinAxiso;)

node:addView[AddView:in] [set-motion:out-->(in.get~ourceo;)]

out. set(time,pos,vel,acc); IISet parameters in new view
out.index = in.index;) HI Set the index value, too

node:change[hit:in] [hit:out-->(me;):(nextrime[out.axis]),set-motion:sm[]]

moveG; HI Move particle to current position
vel[in.axis] = -vel[in.axis];// Change the velocity
setNextHitTime(in.axis); HI Set next hit time for specified axis
out.axis = getMinAxiso; HI Axis for the impact

std::map<process, gvm::object-index>::iterator i; HI For index
for(i=views.begino; i!=views.endo; ++i) HI Loop over map

sm.push -back(me); HI Make new msg
sm.backO.addDest(i->first); HI Add destination to it
sm.backo.index =i->second; HI Specify the index
sm.backo.set(getrimeo,pos,vel,acc); I

Figure 9-35 particle.proc - relevant code for updating scene graph in Bounce2

9.3.3. Brigadel

The Brigade 1 demonstration is an extension of the Brigade2 demonstration described earlier. This

extension provides a graphical representation of the state of progress during the brigade completing its task.

A sample output is shown in Figure 9-36.

151

m uI rI III [I I I I IIIItII I Ihli I0
Il 1 I E i II l i [I l i t I I I I II ,l1 11 Hill 11i 1

Ill hurl in 1111 It~ if II II 111 11 llli 1111

[[I 11 El ItIF ilIill t11 hIil I F I!' EIIEII illl

I i huF HillF [11 11 1 [I El [1 11 Fl 1F 1F 1 EIII i III I

1i 111l 11 uh I I II I I ll h Ih''F Il Ill. 1111 11 1 II IF llll I1! 1 1 1

Figure 9-36 Brigadel sample output

The top bar in the display represents the brigade, the four bars immediately beneath the four subordinate

battalions, followed by the companies, platoons and squads. Under each squad is a column of ten soldiers.

Red units are awaiting orders, yellow units are working on their assigned task, and green units have

completed their task.

9.3.4. Hierarchy

The i-erarchy demonstration is a simple test of the two dimensional display capabilities of the GLUT view

manager, and acts as a sort of predecessor to the Brigade 1 demonstration above. It can be thought of as a

binary tree that is being traversed. The scene starts out with all of the elements in the display colored blue.

While a branch is being traversed, it changes to cyan. When the branch is finished being traversed, it

changes color to green.

A sample output of the Hierarchy demonstration is depicted in Figure 9-37.

Figure 9-37 Output from the Hierarchy demonstration

152

9.3.5. Battle

This demo is the most complex of those discussed here. It is a hierarchical in its structure, with two

opposing forces (designated RED and BLUE) consisting each of one company. Each company owns one

command post, and five tank platoons. Each tank platoon has five tanks. The object is for one team to

destroy the command post of the opposing force. There are three views associated with the demo; a 3D

view of the environment and a tactical view for each force, representing the knowledge of the environment

for the side related to the view.

The simulation starts with the two opposing forces in opposite corners of a square 400km2 play field (20kin

to a side). All of the platoons of team RED initially move to take up a defensive position stretching across

the center of the playfield. Two platoons of team BLUE move to defensive positions about 2,500m from

the BLUE command post. The remaining three platoons move toward the RED command post.

9.3.5.1. Newtonian Motion

All of the objects in the simulation that are participants of the battle in one respect or another undergo

Newtonian motion. This motion is broken into linear and angular components. Linear motion includes

position within the play-space, linear velocity, and linear acceleration. Angular motion includes object

orientation, rotation rate, and rotational acceleration. There is also a start and stop time associated with

motion. The behavior directing the motion is incorporated into a C++ class, spt::NewtonianMotion. This

is done since the class is needed in multiple places within both the simulation engine and the rendering

engine.

Changes in motion parameters are handled via message passing to process:NewtonianMotion instances.

Each of these instances owns and manages the motion parameters in an spt::NewtonianMotion instance.

Any changes to the motion parameters are passed to interested parties, namely the environment (see section

9.3.5.3) and any views rendering representations of the object undergoing Newtonian motion.

9.3.5.2. Sensing

Objects in the simulation have the ability to sense other nearby objects. Tanks have the ability to sense

objects within a 2km range, while command posts can sense objects within a 5km range. To keep things

153

simple, sensing objects are only notified when they detect enemy objects. Upon notification of a new

sensor track, a tank will notify its parent platoon of the track. At present, the tank will then direct fire

against the new track (see section 9.3.5.6 below). If the platoon did not previously know about the track, it

will forward a notification to the parent company, and likewise await further orders. It will also maintain a

list of tracks that subordinate tanks have sensed so that the platoon can make local decisions about how to

deal with the situation. Upon notification to the company of the track, the company will update its list of

tracks if it had not previously been aware of the track, and issue orders to address the situation. Figure 9-38

illustrates this situation.

message:AddTrack
message: ChangeTrack

-1 process: Tank message:AddTrack

message: ChangeTrack

message:AddTrack
message: ChangeTrack

process: Companyt

Figure 9-38 Sensor track detection and change notification in Battle demo

The procedure is the same for notification of changes in the track motion parameters. The switch between

the platoon and company allows notifications to the platoon to be forwarded to the company only when

such notifications from a subordinate tanks was new information. A similar notification mechanism is used

for notifying parents of the loss of a sensor track. In that case, however, the platoon only forwards

notification of the loss when all of its subordinate tanks had reported that it lost the track. This helps to

reduce the number of messages that need to be passed from one level in the hierarchy to the next.

9.3.5.3. Environment

The environment is a process designed to govern interactions between objects in the simulation. It is

primarily responsible for notifying objects of new tracks, changes in the track motion characteristics, and of

lost tracks. The environment will also notify any objects affected by the impact of a munition that it was

154

hit. Though the environment does not strictly perform collision detection between objects, it is logical to

place it here in the event that this function is eventually incorporated into the simulation.

During initialization, each sensing or trackable object must register itself with the environment. This

registration informs the environment as to the objects Newtonian motion parameters, sensing radius, and

team membership (either BLUE or RED). An initial round of sensing event creation accompanies each

new registration. In addition, any time an objects motion parameters change, the environment is notified so

that a new collection of sensing events can be scheduled.

The environment schedules sensing events to occur at some point in the future. These scheduled events

include detection events and loss events. Since there is no way to revoke sensing events that have already

been scheduled, the environment performs one last check before the sensing object is informed to ensure

that the sensor does in fact detect or lose the track, as appropriate. Only those sensing events that occur

before both the track and sensor motion stop time will be scheduled. This also reduces the total number of

messages that must be scheduled. Figure 9-39 illustrates this notification of track detection and loss.

I m message:ScheduleAddTrack
message:RegisterEnvironmenttObject process: Environment message:ScheduleLoseTrack

message: AddTrack
message: LoseTrack /

sensor0 sensor1 ... sensor,

Figure 9-39 Notification of sensor track detection and loss

One assumption that is made regarding the sensor detection is that the sensors implicitly detect friendly

units, but must explicitly detect enemy ones. This allows the environment to notify sensing objects only of

detection events for enemy tracks, reducing the number of messages that must be passed any time an object

changes it motion parameters.

155

9.3.5.4. Vehicle Movement

Tank motion is derived from the fact that it inherits this behavior from the process:Vehicle construct.

Since there is really only one type of vehicle, encapsulating vehicle motion in this manner is, strictly

speaking not necessary. It does provide a convenient mechanism for adding new vehicles to the simulation

in the event that is eventually desired.

process: Vehicle

message:moveto message:SetNewtonianMotion
mode:Default ---

message:Stop E message:SetNewtonianMofion
0 mode:turn to dest -

message:Stop [---- message:SetNewtonianMotion_ mode:movetodest --

message:Stop message:SetNewtonianMofion
,,- mode:turn to heading --

message:MovementComplete

Figure 9-40 Messages governing vehicle motion in the Battle demo

Vehicles move about the battlefield when they receive movement request messages. These movement

request messages contain a destination location and orientation. Upon receipt of one, the vehicle stops any

motion that it may currently be performing and turns to face the destination. It then moves to the

destination, and upon arriving there, will stop and turn to the final orientation. Each step in this sequence

of events needs to be scheduled in the proper order. Furthermore, if a new movement request arrives

during a move, the vehicle must disregard any commands issued in support of the initial move. To

facilitate this sequencing of movement events, the vehicle switches modes as it prepares to perform the next

phase of the movement command. Specifically, during the initial turn toward the destination,

mode:turn to dest is active. Once the turn is complete, it is deactivated and mode:move to dest becomes

active. Similarly, the final turn to the eventual heading is performed while mode:turn to heading is

active. The transition from one phase of the movement to the next occurs when the vehicle receives a

message:Stop instance it had previously scheduled for itself. At the beginning of each transition,

message:SetNewtonianMotion messages inform the interested processes as to the new motion parameters

for the vehicle. These processes are any GVM views with which the vehicle has been registered, the

156

environment, and the parent object (in the case of tanks, the platoon to which the tank belongs). Upon

completion of the final leg of the movement, the vehicle sends a message:MovementComplete message to

its parent. Figure 9-40 illustrates this process.

9.3.5.5. Formation Movement

(b) Line Abreast

(c) V-Formation

(a) Column (d) Forward Sweep

Figure 9-41 Predefined Tank Formations

Tanks are organized into platoons and are capable of moving in formations. These formations have a

position, orientation, and left and right leg angles. These formations act as a template for positioning tanks

relative to some reference point. Normally, the second (i.e. middle) tank acts as the lead for the remaining

tanks. When ordered to a new position, the lead tank takes up that position, and the remaining tanks take

up positions relative to the lead tank as specified by the formation structure. The orientation is a vector, the

angle of which is used to dictate the direction the formation will face, and the magnitude the distance

between adjacent tanks. The leg angles refer to a radial along which tanks will align themselves relative to

the lead tank. A formation with a positive leg angle for a given side arranges tanks along that radial

forward of the lead tank. Likewise, negative leg angles arrange tanks along a radial behind the lead tank.

Figure 9-41 depicts some predefined formation arrangements. In this case, the column formation has a left

157

leg angle of 7t/2 and a right leg angle of-ir/2. The line-abreast formation has a left and right leg angle of

zero. The V-Formation has a left and right leg angle of -it/8, and the forward sweep has left and right leg

angles of it/8. Other formations are possible as well by explicitly specifying the left and right leg angles.

Zmessage:MovementComplete

process:Platoon process:Tank
2

mode:Default process:Tank
modeturn to dest process:Tank

mode:move to dest
process:Tank

mode:turn_to_heading message:MoveTo process:Tank

message:MovementComplete

Figure 9-42 Messaging during formation movement

There are two message constructs used to establish a platoon formation. Both are derived from

message.AdjustFormation. The first, message:SetFormation is used during initialization to establish an

initial formation. Use of this message will cause the platoon to explicitly specify the location and

orientation of the tanks in the platoon. The second, message:MoveFormation is used to move a platoon

from its current position, orientation and arrangement to some destination position, orientation and

arrangement. When the platoon receives an instance of this second message type, it will turn the platoon to

face the final destination, move the formation to the destination, and then face the platoon in the direction

and arrangement specified by the destination orientation. Like vehicle movement, the platoon uses a

collection of modes (mode:turn to dest, mode:move to dest, and mode:turn to heading) to perform

each phase of the movement. Each tank will report with a message:MovementComplete to the platoon that

it has completed its movement instruction for that phase (as shown in Figure 9-40). Only when all tanks in

the platoon are in the proper position will the next phase of the movement commence. The process:Platoon

158

accomplishes this by issuing the next set of movement commands and transitioning to the next mode in the

sequence. Figure 9-42 illustrates how the messages are passed from the platoon to the member tanks.

9.3.5.6. Fire control

Since the process:Environment only notifies process:Tank instances when they detect enemy units, any

new track is assumed an enemy. This track is added to a target queue, and is associated with a

process:SensorTrack instance in the simulation space. The process:SensorTrack construct is a parent

construct for all process:Vehicle and process:CommandPost constructs. At present if the sensing tank has

no other targets it is tracking, it will enter an attack mode whereby it will calculate a firing solution to the

target and shoot a process:Munition at it.

message:AddTrack
message:ChangeTrack

message:LoseTrack

process: Tn

mode:Default.ee lprocess:Environment

mode:Attack

E

E

process:Munition process:SensorTrack

Figure 9-43 Fire control sequence for a tank

When firing at a target, the tank must first line up its gun so that when it fires the munition, it can be

guaranteed of hitting the target. It does this by changing the azimuth and elevation of the gun, operations

requiring some time to complete. While aiming, any changes in the target movement parameters cause the

tank to recalculate the firing solution, and restart the aiming process. If the track is lost, it the tank will

direct fire against the next target in its target queue. When the process:Tank finishes aiming its gun, it

then fires a projectile. Upon impact, the process:Munition notifies the process:Environment of its impact

location. The environment then looks at all objects registered to it and notifies any within 3m of the

159

munition impact point that that it has been hit. The munition is also notified of the tracks it struck, so that it

may inform the firing tank of the target(s) the munition destroyed. If the munition missed the intended

target, the sequence is repeated until the target is destroyed. Once complete, the tank moves on to the next

track that it has and repeats the process until all of its tracks are destroyed. Figure 9-43 illustrates the

message passing in the fire control and subsequent notification.

9.3.5.7. Target Destruction

Once a target is struck with a munition, the simulation system assumes that it has been destroyed. There is

some clean up that the system must perform afterwards to ensure that a destroyed object behaves that way.

The first thing that must be done is for the destroyed object to inform its parent that it has been destroyed

and to eliminate any tracks the parent may have as a result of the newly destroyed object's sensors. To this

end, the object sends a message:Destroyed to its parent, followed by a collection of message:LoseTrack

instances. In the case of a tank, the parent platoon also informs the process:Company instance so that the

tactical view (see section 9.3.5.8) can be properly updated to reflect this loss. Likewise, if the object was

the last in the parent unit to be tracking a particular enemy unit, then this must also be passed up the chain

via another message:LoseTrack. If the destruction of the subordinate unit results in the loss of the parent

(i.e. all five tanks in a platoon are destroyed), then this must be passed further up the chain with another

message:Destroyed instance.

The destroyed unit notifies the process:Environment that it has been destroyed 13. Within the

process:Environment, several steps need to be taken to ensure that the objects sensing the newly destroyed

unit can no longer track it. This is performed with one message:LoseTrack forwarded to all objects that

had previously been able to sense the unit. The environment ignored events it may have scheduled based

upon the future location of the now destroyed unit (a future sensor detection, for instance).

Figure 9-44 depicts some of the messages that need to be passed to perform this clean up.

13 Even though the process:Environment notified the target of the fact that it was hit by a munition, it
makes no assumptions about how many hits will actually destroy a target. This allows for some flexibility
if the simulation is to one day be expanded.

160

messageDestroyed

procss:ensr~rak I -- "parent unit" "parent unit"

paen unit"

message:LoseTrack message :LoseTrack

Figure 9-44 Clean-up after a unit destruction

9.3.5.8. Viewers

Figure 9-45 Shots of the initial platoon configurations in the BattleView of the Battle demo

Three viewers are used in the battle demo. The first is a three dimensional representation of the virtual

environment. In this view, all of the objects can be seen with some degree of detail. Users can perform a

virtual fly-by within this view to look at the layout of the various formations, or the location and orientation

of an individual tank. Sample images are provided in figure 9-45.

The other views represent the world as seen by the Blue and Red teams individually. These are called the

Red and Blue Tactical Views respectively. Friendly units in each view are colored with the team color, and

161

have a disk around them that indicates the range of that particular unit's sensors. Hostile units will appear

in their team color as they become visible to the friendly units. The tactical views for Figure 9-45 are

provided in Figure 9-46.

E D: :.... _ __ __ : .:,. ._ x

mm

Figure 9-46 Red and Blue tactical views showing each side's knowledge of the environment

. ._ .j X-11....

llL ,
eeaeL

Figure 9-47 oedtoaactical viewsl afte the opsiuang f orsses u t etascthe atl

view depicted in figure 9-48.

162

8 dMlX

Figure 9-48 Sample engagement of opposing forces

The user can change viewing parameters within the views. Table 9-2 shows the key/mouse commands

used to change the view and to do other simple tasks. Most of the keys and all of the mouse commands

operate only in the BattleView. The keys that work in the Tactical View are ESC, 'h', 'H', 'r', and 'R'.

As a side note, the simulation is in a pause state at the beginning of the run, and must be resumed in order

for the simulation to progress.

163

KeyRMouse command Function
'a', 'A' Translate the view to the left
'V', 'D' Translate the view to the right
1e', 'E' Translate the view down
ch', 4W Halt (paue) the simulation

'q', 'Q' Translate the view up
'r', 'R Resume simulation
Ms LSg Translate the view back
w, W d Translate the view forward

1, 2, 3, 4, 5, 6, 7, 8, 9 Translation speed. n+1 translates at twice speed of n.
ESC Quit the program
I+', '=' Zooms into the scene
'-' 6'1 Zooms out of the scene

Mouse Left down & Drag left/right Rotates the view about the view z axis
Mouse Left down & Drag up/down Rotates the view about the view y axis
Mouse Right down & Drag left/right Rotates the view about the view x axis

Mouse Center down & Drag up/down Zooms into and away from scene

Table 9-2 BattleView keyboard/mouse commands

164

Chapter 10. Conclusions
Though we did not accomplish all we set out to with the SODL system, we have contributed to the body of

knowledge, specifically in the field of distributed simulation.

10.1. Contributions of this work

10.1.1. SODLsystem

The SODL system is intended to provide a mechanism to facilitate development of distributed discrete

event simulations based upon the notions of stimulus-response. Overall, the language structure

successfully accomplishes this goal. The simulations highlighted in Chapter 9 and listed in Appendix C

reveal that comparable systems developed from scratch would have had to contain considerable code to

ensure that messages were delivered in the proper order. Likewise, systems built on top of existing

libraries would have to include interfaces into those libraries that would again detract from actually

defining the object behavior in the simulation system. Those fourth generation languages intended for use

with either optimistic or conservative synchronization (namely YADDES and APOSTLE) require rigid

specification of the message passing topology.

In the introduction, we claimed that the guiding principle of SODL was to split the simulation engine

performing the mechanics of simulation from the behavior of the objects within the simulation. SODL

largely succeeds at hiding many of the artifacts of performing a distributed simulation from the simulation

system developer (the most notable exception being 1/0 operations) without sacrificing the generality

available in other approaches. This allows developers to generate SODL code that closely resembles

models they have developed without having the language or associated run-time system intrude upon that

model. Additionally SODL provides an extensive (albeit non-exhaustive) collection of visualization tools

to help facilitate analysis.

10.1.2. Simulation Formalism

Chapter 2 of this dissertation provides a formal description of the process of modeling and simulation and

how it relates to real-world or hypothetical systems. This formalism provides a basis for discussing

165

simulation within a larger context than has been provided within previous work. This formalism builds on

top of the existing body of work and relates the larger context formally to the notions of distributed discrete

event simulation prevalent in that existing work.

10.1.3. Asynchronous Global Virtual Time Algorithm

Chapter 3 concludes with the formal description of a generalized version of Mattern's algorithm for

performing asynchronous Global Virtual Time (GVT) estimates. This generalization makes no

assumptions about the underlying simulation topology in use for inter-process communications, while still

maintaining the conditions necessary to ensure that local estimates of the GVT are lower bounds of the

actual GVT. We go on to formally prove the correctness of this generalization. To the knowledge of this

author, both the generalization and the formal proof of that generalization are original work.

10.2. Potential future work

While the amount of work that went into the SODL system is quite extensive, it falls short of some of the

original notions surrounding it. This section highlights these issues, and introduces some others that are a

natural extension of the work presented here.

10.2.1. Distributed SODL run-time system

The original intention of this work was to develop an operational distributed simulation system. While a

number of factors seem to have played a role in keeping this feature out of the final system, ultimately it

has been this author's responsibility for decisions made and actions taken that forced the decision to drop

this capability.

The current SODL system implements a full optimistic simulation engine that can be fitted with the proper

networking code to provide a fully distributed simulation system capability. The notion has always been to

use the Message Passing Interface (MPI) as a means of distributing the simulation system, and it is this

authors hope that this can be implemented in fairly short order.

166

10.2.2. Graphics Subsystem

While the GLUT View Manager (GVM) is useful as a research tool for visualizing the simulation system,

more advanced approaches will likely require more sophisticated graphical representation, to include such

things as solid rendering, lighting, curved surfaces, texturing, collision detection, and other features found

in contemporary graphics systems. None of these advanced features are currently implemented in GVM.

With some additional work, they could be incorporated easily.

10.2.3. User Interface

The user interface in the SODL system is very limited. Currently, it cannot be used to interact with objects

in a rendered scene. There are a number of mechanisms within OpenGL allowing such interactions; such

mechanisms could be used as a basis for allowing users to send messages to objects within the virtual

environment. At the current time, the SODL system is not intended to support such efforts, and little

thought has been given to how this might be accomplished.

10.2.4. Process Migration and Load Balancing

One problem associated with distributed simulation is load balancing, ensuring that no one node in a

distributed simulation system has a significantly larger number of messages to process relative to its

processor speed than other nodes. In conservative simulation, this problem leads to excessive blocking of

the faster nodes, slowing down the overall simulation execution. In optimistic simulation, faster nodes will

be required to use more memory to store old state and message information in the event a rollback is called

for. This can be mitigated through process migration, directing a redistribution of the workload so that no

one node is excessively burdened with a disproportionate workload.

This problem was never addressed in the SODL system, as it was beyond the scope of the research

described herein, and because a distributed implementation of the SODL run-time system was never

actually produced. If a distributed SODL run-time system is developed, an obvious mechanism to deal

with these issues would be to actually continue instantiating all of the processes locally and then merely

turning different processes on and off on different nodes depending upon load on each node.

167

10.2.5. Analysis tools

The focus of the SODL system has primarily been upon the language structure and to a lesser extent, the

run-rime system. When simulation is used to perform analysis of one sort or another, it is quite often useful

to provide tools to facilitate this analysis. This facilitation could be anything from formatting data that can

be incorporated into an existing analysis tool, or through internal tools that can be called upon during or

after a simulation run. There are no tools within the SODL system allowing a direct analysis of data

generated. Such tools could be incorporated into later releases.

SODL also lacks any reasonable random number generation capability for serious analysis. (Press 1992)

contains a number of algorithms for generating random numbers of various distributions. Such algorithms

can be incorporated into a C++ class dedicated to random number generation. Alternatively, third party

software with liberal copyright restrictions (e.g. GNU Public License) might also be useful.

10.2.6. Multiple inheritance

At times during the development of some of the demonstrations, the author discovered instances where

multiple inheritance could be a useful tool. While work-arounds resolved many of the problems, they

tended to be somewhat clumsy. As such, the overall system could greatly benefit from multiple

inheritance.

168

Appendix A. SODL Language Parser Specification

The SODL Parser, sp, uses the following specification to parse SODL program files.

line-specifier { import-specifier } line-specifier
I { debug bool-value } line-specifier
I { message-specifier }
I {process-specifier }

import-specifier : import import-list
I import identifier:: import-list
I import:: import-list
] import message sim-import-list
[import process sim-import-list

import-list { imports }

imports C+ +-#include-parameter
I C++-#include-parameter, imports

sim-import-list: identifier
I identifier, sim-import-list

message-specifier : message: identifier { message-definition }
I message : identifier ;
I message: identifier (identifier) { message-definition }
I message : identifier (identifier);

message-definition : variable-specifier
I method-specifier
I variable-specifier message-definition
I method-specifier message-definition

variable-specifier: identifier: identifier process-qualifiers;
I identifier:: type-specifier : identifier variable-qualifiers;
I :: type-specifier: identifier variable-qualifiers ;
I scalar-specifier : identifier variable-qualifiers ;

process-qualifiers : null
I affinity-specifier
I size-specifier
I size-specifier affinity-specifier

variable-qualifiers : null
I initialization-specifier
I scalar-specifier
I size-specifier initialization-specifier

type-specifier C++-type-expression

affinity-specifier: : modified-C++-integer-expression;

size-specifier : integer-value I

initialization-specifier modified-C+ +-expression)

169

scalar-specifier: bool
Ibyte
Ichar
Idouble
Ifloat
i mt
long
uint

Iulong
rand
process

Iprofile
method-specifier: method: identifier (method-parameter-list) {C++-code}

method-parameter-list : access-specifier; type-specifier ; method-parameters

access-specifier :public
Iprotected
Iprivate

method-parameters null
I variable-specifier ; method-parameters

process-specifier :process: identifier;
I process: identifier (identifier)
I process: identifier (process-definition I
Iprocess :identifier (identifier) I process-definition}

process-definition message-definition
mode-declaration

I message-definition process-definition
I mode-declaration process-definition

mode-declaration :mode: identifier I node-list}
Imode: identifier;

Node-list : node-specifier
I node-specif'ier node-list

node-specifier: node: identifier [input-message JIoutput-message-list] C+ +-code)}

input-message :identifier : identifier

output-message-list: null
I output-message, output-message-list

output-message : identifier : identifier output-qualiiers
I identifier : identifier [JI output-qualifiers
I identifier: identifier [integer-value]I output-qualifiers

output-qualifiers : null
I:(time-specifier)

I => (destination-list)
I => (destination-list) : (time-specifier)

time-specifier : modified-C+ +-double-express ion

destination-list : modifed-C+ +- destination ;
I modified-C+ +- destination; destination-list

170

identifier is an alpha-numeric string of characters starting with a letter. It can include the '_' character.

integer-value is C++ specification of an integer constant.

bool-value is one of the two constants, true or false.

C++-#include-parameter is a text stream that is suitable for inclusion immediately following an #include

directive in a C++ source code file.

C++-type-expression is a C++ expression that describes a C++ type.

modified-C++-integer-expression is a C++ expression that when modified, will evaluate at run-time to an

integer. It is modified by changing any instance of the '@' and '#' characters to an array index value and

array size respectively.

modified-C++-expression is a C++ expression that when modified, will evaluate at run-time to a value of

the desired type. It is modified by changing any instance of the '@' and '#' characters to an array index

value and array size respectively.

C++-code is a block of C++ code.

modified-C++-double-expression is a C++ expression that when modified, will evaluate at run-time to a

double precision floating point number. It is modified by changing any instance of the '@' and '#'

characters to an array index value and array size respectively.

modified-C+ +-destination is a C++ expression that when modified, will evaluate at run-time to a process

handle. It is modified by changing any instance of the '@' and '#' characters to an array index value and

array size respectively.

171

172

Appendix B. SODL Run Time engine class reference

B. 1. Overview

The SODL simulation engine and support library is designed to provide the basic infrastructure for passing

messages between simulation processes. This documentation highlights the data members and methods for

this infrastructure.

B.2. SODL Run-Time System C++ Classes
The SODL run-time system is responsible for ensuring that messages are delivered to the proper process in

the proper time stamp order. It provides the basic infrastructure for this, and provides extensible class

declarations for messages, processes, and support for 10 operations. All classes in the Run-Time system

are in the sodl:: namespace unless otherwise stated.

B.2.1. ::Exception

The ::Exception class is a holding place for a collection of nested classes, each of which are different types

of exceptions that the SODL run-time system may from time to time make use of when recognizing some

problem from which it cannot recover. These nested classes are all publicly available and are described in

the following sections.

Parent Classes: None

Derived Classes: None

B.2.2. ::Exception::BadCast

This exception class is used when an attempt to cast an object from one type to another (usually

dynamically) fails. This is a somewhat unusual circumstance for the SODL system since the only objects

that are normally cast from one type to another are derived either from sodi::Process or sodl::Message

classes. Since these have fields for defining the actual type of the instance in question, dynamic casting

should be straightforward. Thus, when an ::Exception::BadCast is thrown, it is usually indicative of a

deeper and more serious problem than simply a typing mix up.

173

Parent Classes: public ::Exception::Nonspecific

Derived Classes: None

Protected Data Members:

std: :string ::Exception::BadCast: -from - String representation of the type being cast from.

std: :string :Exception: :BadCast: :o - String representation of the type being cast to.

Public Constructors:

::Exception: :BadCast: :BadCast(std: :string t, std: :string J) - This constructor initializes to to tand from

tof. It also calls the parent constructor ::Exception::Nonspecific("Bad cast from").

::Exception::BadCast: :BadCast(std: :string m, std: :string t, std: :string J) - This constructor initializes to

to t andfrom tof. It also calls the parent constructor ::Exception::Nonspecific(m).

Public Methods:

virtual void ::Exception::BadCast::seriilize(std::ostream& os) const - This method displays the error

message to stream os.

B.2.3. :Exception:: Causal ityE rror

When a sodi: :Engine instance receives a straggler with a time stamp t, and for some reason the engine or

one of its subordinate process controllers cannot rollback to time t (due primarily to a programming bug)

then the engine or process controller will throw an ::Exception ::CausalityError.

Parent Classes: public ::Exception::Nonspecific

Derived Classes: None

Protected Data Members:

174

double ::Exception::CausalityError::att - Time stamp to which the SODL run-time system is attempting

to rollback.

double ::Exception::CausalityError::gvt - Last possible time to which this particular function can

perform a rollback..

Public Constructors:

::Exception::CausalityError::CausalityError(double g, double a) - This constructor initializes gvt to g

and att to a. It also calls the parent constructor ::Exception::Nonspecific("Causality error: Attempt at

time ").

::Exception::CausalityError::CausalityError(std::string m, double g, double a) - This constructor

initializes the member variables gvt to g and att to a. It also calls the parent constructor

::Exception: :Nonspecific(m).

Public Methods:

virtual void ::Exception::CausalityError::seriailize(std::ostream& os) const - This method displays the

error message to stream os.

B.2.4. ::Exception:: Nonspecific

Any of a number of non-specific errors can be generated during the execution of a simulation instance.

This exception is thrown when such an error is detected.

Parent Classes: None

Derived Classes: None

Protected Data Members:

std::string ::Exception::Nonspecific::msg - Error message to display when called upon to do so.

Public Constructors:

175

::Exception::Nonspecific::Nonspecific(std::string m) - This constructor initializes msg to m.

Public Methods:

virtual void ::Exception::Nonspecific::seriailize(std::ostream& os) const - This method displays the

error message to stream os.

B.2.5. ::Exception::RangeError

There are a number of std::vector instances throughout the SODL run-time system. When an attempt is

made to access an element outside of the vector bounds, a range error is thrown.

Parent Classes: public ::Exception::Nonspecific

Derived Classes: None

Protected Data Members:

ulong ::Exception::RangeError::attVal - Vector index that was attempted to be accessed.

ulong ::Exception::RangeError::size - Actual size of the vector that is being accessed.

Public Constructors:

::Exception::RangeError::RangeError(ulong s, ulong a) - This constructor calls the parent constructor

::Exception::Nonspecific("Range error: Attempt at index ") and initializes size to s and attVal to a.

::Exception::RangeError::RangeError(std::string m, ulong s, ulong a) - This constructor initializes the

member variables size to s and attVal to a. It also calls the parent constructor

::Exception: :Nonspecific(m).

Public Methods:

virtual void ::Exception::RangeError::seriailize(std::ostream& os) const - This method displays the

error message to stream os.

176

B.2.6. sodl::AntiMessage

sodl::AntiMessage instances are used in the Time Warp algorithm to revoke messages that have lost their

validity in the simulation execution. The simulation engine (sodl::Engine) creates a sodl::AntiMessage

when it becomes clear that messages transmitted need to be revoked. This is normally the result of a

rollback to an earlier time than the current time stamp in the sodl::Engine instance issuing the

sodl: :AntiMessage instance.

Parent Classes: public sodl::SystemMessage

Public Constructors:

AntiMessage::AntiMessage(sodl::Message& msg) - Creates a sodl::AntiMessage instance that will, if

sent to do so, revoke the sodl::Message instance msg and any copies made of it.

Public Methods:

static void AntiMessage::typelnit(sodl::mtype t) - Performs type data initialization used in ascertaining

the type of message instance transmitted.

virtual bool AntiMessage::annihilate(const sodl::Message& msg) - Returns true if and only if this

sodl::AntiMessage instance is supposed to annihilate msg.

B.2.7. sodl::Clock

The sodl::Clock class is responsible for managing time. It has a discrete mode where the sodl::Engine

class can specifically set the clock time, and provides a framework for extending its functions to include

operation in a real time fashion. Each sodl::Engine instance has one sodl::Clock instance. Processes

controlled by a particular engine can call getEngineO.getClockO to obtain a reference to their local clock.

Parent Classes: public sodl::TimeStamp

Derived Classes: None.

Private Data Members:

177

static double sodl::Clock: :pos - Used to determine the next possible time for current times strictly greater

than 0. This is currently set to 1+10 - 15 .

static double sodl::Clock::neg - Used to determine the next possible time for current times strictly less

than 0. This is currently set to 1-10 15.

static double sodl::Clock::endTime - Used as delimiter as the last possible simulation time. No messages

scheduled to occur after sodl::Clock::endTime will be handled. The default value for this member variable

is 10307.

static double sodl::Clock::startTime - The time stamp of the message:StartSimulation. Its default setting

is -1.

Public Constructors:

sodl::Clock::Clock(ulong n) - The primary purpose of this constructor is to call the parent constructor

sodl::TimeStamp(-sodl::Clock::endTime, n) to establish the clock time stamp and associate it with a

specific sodl::Engine instance.

Public Methods:

static double sodl::Clock::getEndTime(void) - Returns a copy of the static member variable endTime to

the calling routine.

virtual double sodl::Clock::getNextTime(void) const - C++ does not provide a routine (of which this

author is aware) that when given a double precision floating point number, t, will return the smallest double

precision floating point number that is strictly greater than t. getNextTimeO fills this niche, albeit

imperfectly. It will return next-time(current-time) as defined in Equation 6-1.

static double sodl::Clock::getStartTime(void) - Returns a copy of the static member variable startTime to

the calling routine.

178

B.2.8. sodl::Defs

The sodl::Defs class is responsible for managing all of the system-defined types and some common

routines of which various other classes in the SODL simulation run-time system can make use. Sp

generates both baseDirlbuildSubdirlDefs.h and baseDirlbuildSubdirDefs.cxx. This creates a different

sodl::Defs definition for different programmer-defined simulation systems.

Parent Classes: public sodl::Trace

Derived Classes: sodl::Clock; sodl::Earlier; sodl::Engine; sodl::Handle; sodl::IdleListener; sodl::Later;

sodl::Message, sodl::Process; sodl: :ProcessContro~ler; sodl: :ProcessMode; sodl: :ProfileTools;

sodl: :Random; sodl: :Schedule; sodl: :Scheduleltem; sodl: :ViewManager;

Public Enumerators:

enum sodl::Defs::MessageType - This is an enumeration of all of the message types. The enumerator

names have the form SMTjmessage-type where message-type is the programmer defined type name of a

message. The last enumerator in the list of them has name SMTLAST.

enum sodl::Defs::ProcessType - This is an enumeration of all of the process types. The enumerator

names have the form SPTjprocess-type where process-type is the programmer defined type name of a

process. The last enumerator in the list of them has name SPTLAST.

Private Data Members:

static std::vector<std::string> sodl::Defs::msgNames - A string representation of the message types. In

general msgNames [sodl::Defs ::SMTjmessage-type] = "message-type ".

static std::vector<std::string> sodl::Defs::procNames - A string representation of the process types. In

general procNames[sodl: :Defs: :SPT-process-type] = "process-type".

Protected Data Members:

179

static std::vector<std::vector<bool> > Defs::msgTypes; - Relationship between related message types.

msgTypes[tl][t2] (where t] and t2 are both MessageType instances) is true exactly when tl is associated

with a message class which is a parent of the message class associated with t2 or tl=t2.

static std::vector<std::vector<bool> > Defs::procTypes; - Relationship between related process types.

procTypes[tl][t2] (where ti and t2 are both ProcessType instances) is true exactly when tl is associated

with a process class which is a parent of the process class associated with t2 or tl=t2.

Public Methods:

static void sodl::Defs::startup(void) - Performs a number of static initialization functions including

populating the static string arrays, msgNames and procNames as well as initialization of the msgTypes and

procTypes arrays.

static void sodl::Defs::shutdown(void) - Performs functions associated with shutting down the simulation.

As of this writing, this routine does not perform any specific function, but is provided as a counter-point to

the startupO method described above.

static bool sodl::Defs::isType(sodl::Defs::MessageType a, sodl::Defs::MessageType b) - A convenience

function which returns msgTypes[a] [b] to the calling routine.

static bool sodl::Defs::isType(sodl::Defs::ProcessType a, sodl::Defs::ProcessType b) - A convenience

function which returns procTypes[a][b] to the calling routine.

static std::string sodl::Defs::msgName(sodl::Defs::MessageType t) - This returns the type name

associated with MessageType t. Specifically, it returns the array value msgNames[t] to the calling routine.

static std::string sodl::Defs::procName(sodl::Defs::ProcessType t) - This returns the type name

associated with ProcessType t. Specifically, it returns the array value procNames[t] to the calling routine.

virtual void sodl::Defs::serialize(std::ostream& os) const - A stub which may be used to produce class

dependent formatted output to a stream. Any derived classes should overload it to properly format the

180

output, to avoid the default output (" * OVERLOAD ME **** "). It was not declared as an abstract

method since there may be derived classes without any need to produce output.

B.2.9. sodl::Earlier

This class provides an operator for comparing the time stamps of pointers to two messages. It is used in the

sodl::Engine class to properly order the messages in the event queue.

Parent Classes: public sodl::Defs.

Derived Classes: None

Public Methods:

static bool sodl::Earlier::comp(sodl::Message* a, sodl::Message* b) - This operator compares the time

stamps on the two message pointers. It returns true exactly when the time stamp of *a is earlier than the

time stamp of *b. In the event that the time stamp of the two messages are the same, the message handles

are used, first comparing the engine index upon which the message was initially generated, and then the

message instance number for that originating sodl::Engine instance.

virtual bool sodl::Earlier::operatorO (sodl::Message* a, sodl::Message* b) - This merely returns the

value returned by calling comp(a, b).

B.2.10. sodl::EndSimulation

The sodl::EndSimulation class is a message time stamped with the last possible value. Though its use may

not be necessary, it made many aspects of the optimistic synchronization implementation employed in the

SODL system somewhat more intuitive and straightforward.

Parent Classes: public sodl::SystemMessage

Derived Methods: None

Public Constructors:

181

sodl::EndSimulation::EndSimulation(void) - This constructor initializes the message time stamp to

sodl::Clock::getEndTime(, and calls the parent constructor in such a way as to make the root process the

source of the message in all cases.

virtual bool sod::EndSimulation::getTX(void) - Overloads sodl::Message::getTXO so that it always

returns true.

static void sodl::EndSimulation::typelnit(sodl: :mtype t) - Used to perform type initialization during the

sod: :Defs::startupO call.

B.2.11. sodl::Engine

The sodl::Engine class is primarily responsible for message delivery for the processes it controls. It also

manages the virtual time of all the processes under its control, directing fossil collection activities and

rollbacks. It also manages the sodl:AnfiMessage instances associated with messages that have been

transmitted from subordinate processes.

Parent Classes: public sodl::Defs.

Derived Classes: None

Private Data Members:

std: :priority.queue<sodl: :AntiMessage*,std: :vector<sodl: :AntiMessage*>,sodl: :Later>

sodl::Engine::antimessages - A list of pending sodl::AntiMessage instances. The top element of the

event queue is compared with the top element of the antimessage queue. If they annihilate each other, they

are both removed and destroyed and the original message is never processed.

sodl::Clock sodl::Engine::clock - The simulation time clock for the sodl::Engine instance.

std: :priority-queue<sodl: :Message*, std: :vector<sodl: :Message*>, sodl: :Later> sod: :Engine: :evQueue

- List of pending messages, with the earliest message being at the top. Ties are broken using the message

handle, so all they are executed in a unique order.

182

sodl::schedule sodl::Engine: :fcSched - The fossil collection schedule. When new process states are saved

for later rollback, they schedule a fossil collection event with the engine. This schedule is maintained in

fcSched.

bool sodl::Engine::hold - This contains true when this engine is in a hold status (i.e. it's waiting for the

user to allow the simulation to proceed). It contains the value false otherwise.

ulong sodl::Engine::msgCount - The message count. Processes owned by a particular sodl::Engine

instance will have as the index portion of their handle the current message count (msgCount). This value is

then incremented in anticipation of the next message.

ulong sodl::Engine::node - This member acts as an index on the engine instance. Each sodl::Engine

instance is given a unique node number to be used in the node portion of the handles for all processes the

engine controls, as well as all messages originating from any such processes.

std::deque<sodl::AntiMessage> sodl::Engine::outMessages - sodl::AntiMessage instances associated

with all messages transmitted from each engine are stored so that, when a rollback is necessary, the

transmitted messages can be revoked. These sodl::AntiMessage instances are inserted into the double

ended queue in the order they were created. Thus, they are sorted by generation time, making revocation

and fossil collection a straightforward matter of removing elements from either the back or the front of the

queue.

std::deque<sodl::Message*> sodl::Engine::processedMessages - Each message is processed in time

stamp order. After being processed, they are inserted into the processed message queue, allowing rollbacks

to occur should this be necessary. Since they are inserted into the front of this double-ended queue in time

stamp order, rollback and fossil collection is simply a matter of removing from either front or back of the

queue, respectively.

std::vector<sodl::ProcessController*> sodl::Engine::procList - This is the collection of process

controllers governed by a sodl::Engine instance. As new processes are added, space in the vector is added

to accommodate the sodl::ProcessController instances.

183

Public Constructors:

sodl::Engine::Engine(ulong n) - Initializes sodl::Engine::msgCount to 0, sodl::Engine::node to n, and

calls the constructor clock(n).

Public Methods:

virtual void sodl::Engine::fossilCollect(double t) - After incremental fossil collection is completed,

regular fossil collection can be performed. This involves removing saved antimessages (from

outMessages) and previously processed messages (from processedMessages) with time stamp values

strictly earlier than t.

virtual sodl::Clock& sodl::Engine::getClock(void) - Returns a reference to the engine's clock clock.

virtual sodl::Scheduleltem sodl::Engine::getNextFossilCollectEvent(void) - Returns to the calling

routine a schedule item with the time stamp of the engine's next fossil collection event and index of the

engine's node. Specifically, it returns to the calling routine sodl::Scheduleltem(time stamp, node), where

time-stamp takes on the value Clock::getEndTimeO if no fossil collection events remain, or to the time

stamp of the next event fcSchedO.topO.getTimeO otherwise. This is used in the sodl::EngineStand to

schedule engines for incremental fossil collections to ensure that all output and other irrevocable activities

occur in the proper time stamp order.

virtual long sodl::Engine::getNode(void) - This method returns the node value to the calling routine.

virtual void sodl::Engine::incrementalFossilCollect(double t) - The top element in the fossil collection

schedule, fcSched, should have time stamp t, and is scheduled for process controller n on the engine.

Process controller n is allowed to perform fossil collection up to time t, which should allow only the earliest

fossil not previously collected to perform any irrevocable actions.

virtual bool sodl::Engine::hoding(void) const - Returns true exactly when this engine instance is holding

because of a scheduled or user induce hold in the simulation.

184

virtual void sodi::Engine::init(void) - This routine performs some initialization for the sodl::Engine

instance. This initialization includes calling the init method for each of the process controllers inprocList.

virtual ulong sodl::Engine::nextMessage(void) - This routine returns the current value of the msgCount

and then increments it by one for the next message. This value is used in sodl::Message instances to create

a unique index for the message handle.

virtual ulong sodl::Engine::nextProcess(void) - This routine allocates space in the process controller list

(procList) and returns an index number to the calling routine. This is normally called by a process

controller requesting space in the engine's process controller list for later registration.

virtual sodi::ProcessController& sodl::Engine::operator[](ulong n) - Returns to the calling routine

procList[n], which is the nth process controller on this sodl::Engine instance. If does not address a valid

process instance on the local engine, an exception (::Exception::RangeError) is thrown.

virtual ulong sodl::Engine: :processCount(void) const - Returns the number of processes currently under

control of the engine when called after the simulation starts. Prior to that time, there may be some process

controllers that have not yet registered with the engine.

virtual void sodl::Engine::receive(sodl::Message& msg) - Inserts an incoming sodl::Message pointer

into evQueue. If the time stamp on the incoming message is less than the current time in the sodl::Clock

instance, then the engine instance rolls back to ensure that the incoming message can be in the correct order

with respect to the other messages in the event queue.

virtual void sodl::Engine::reg(sodl::ProcessController& pc) - This registers a sodl::ProcessController

instance with the simulation engine. This involves inserting the process controller into the proper location

in the procList vector.

virtual void sodl::Engine::rollback(double t) - Conducts a rollback to time t. It does this by calling the

rollback routines for each of the process controllers in the procList array; transmitting any members of

outMessages with a time stamp not strictly less than t; removing all members of the double ended queue

processedMessages with time stamps not strictly less than t and reinserting them into the evQueue.

185

virtual void sodl::Engine::scheduleFC(double t, ulong n) - This schedules a fossil collection event in

fcSched for process controller n at virtual time t.

virtual void sodl::Engine::scheduleFC(sodl::Scheduleltem i) - This routine schedules a fossil collection

event at time i.getTimeO for process controller i.getlndexo.

virtual void sodl::Engine::serialize(std::ostream& os) const - This routine is designed to overloads

sodl: :Defs::serialize(std::ostream&) to produce output to stream os regarding various aspects of the engine

state.

virtual void sod::Engine::start(void) - This routine is called immediately prior to the simulation starting.

It creates sodl::StartSimulation and sodl::EndSimulation messages and adds the processes under its

control as destinations. These messages are given their default time stamp value

(sodl::Clock::getStartTimeO=-1 for sodl::StartSimulation instances, and sodi::Clock::getEndTimeO =

10307 for sodl::EndSimulation instances). These messages are then inserted into the pending message

queue.

virtual double sodl::Engine::step(void) - This routine processes the next non-revoked message in the

event queue provided its time stamp is not later than the earliest remaining hold in

sodl::EngineList::stand.holdList. It then returns the time stamp of the last message processed, or

Clock::getEndTimeO if the event queue was empty.

virtual void sodl::Engine::transmit(sodl::Message& msg) - This routine retains a copy of msg's

antimessage for potential rollbacks. Msg is then sent to the transmit method of the sodl::EngineStand class

governing local execution of the simulation system.

B.2.12. sodl::EngineStand

The sodl::EngineStand provides a mechanism for arbitrary distribution of sodl::Engine instances across a

network. Each node in a distributed simulation, has exactly one sod::EngineStand instance, and local

copies of all the sodl::Engine instances that the programmer specifies. Each engine stand controls the

186

activities of only those engines that reside on that stand's node. Messages destined for engines controlled

by other engine stands must be forwarded over the network to simulation node controlling that engine.

Parent Classes: public sodl::IdleListener

Derived Classes: None

Protected Data Members:

bool sodl::EngineStand::started - This flag is set to true exactly when the simulation has started. It is

false prior to that happening.

double sodl::EngineStand::gvt - Local estimate of the Global Virtual Time (GVT).

std::vector<sodl::Engine> sod::EngineStand::engineList - This is a list of all of the engines in the

simulation. Every sodl::Engine instance is controlled by exactly one sodl::EngineStand instance in the

distributed simulation. However, all engines are allocated on all engine stands.

std::priority-queue<double, std::greater<double> > sodl::EngineStand::holdList - List of holds. If

holdList is not empty, no engine may continue processing to times after the minimum element in the

holdList. If the holdList is empty, then there are no holds, and processing may continue unabated.

Public Data Members:

static sodl::EngineStand sodi::EngineStand::stand - This is a static instance of the sodl: :EngineStand

class. Each node in a distributed simulation controls exactly one sodl::EngineStand instance. That

instance is sodl: :EngineStand::stand.

sodl::ViewManager* sodl::EngineStand::vm - Each node in a distributed simulation has exactly one

sodl::ViewManager instance associated with each sodl::EngineStand instance. That instance is

*stand: :vm.

Public Constructors:

187

sodl::EngineStand::EngineStand(void) - This constructor initializes member variables vm to NULL,

started to false, and gvt to the value returned from a call to sodl::Clock::getStartTimeO.

Private Methods:

virtual void sodl: :EngineStand::updateGVT(double t) - This method will update the local estimate of the

GVT to time t. This update includes performing fossil collection on each of the engines the stand controls.

The first phase of fossil collection involves polling each locally controlled engine as to the next scheduled

item in their fossil collection schedule. Each engine is then scheduled at the engine stand level for

incremental fossil collections; the engine with the earliest scheduled fossil collection event with time stamp

less than t is permitted to perform that event. That engine is then polled for its new latest fossil collection

event, which is then scheduled in the engine stand. All locally scheduled fossil collection events with time

stamp less than t are thus performed in time stamp order.

The second phase of the fossil collection allows each of the locally controlled engines to perform its gross

fossil collection (reclaiming memory occupied by processed messages and antimessages generated from

outbound messages) up to time t.

virtual void sodl::EngineStand::resize(ulong n) - Resizes the number of engines to n. If n is larger than

the current size of engineList, then additional engines are allocated. Any requests to reduce the size of the

engine list are ignored. During the process allocation phase of the simulation setup, there is no clear

indication from the programmer exactly how many simulation engines will actually be needed. During the

process allocation, as new engines are requested, they are dynamically added to the list of them in the

engine stand. This method performs that resizing.

Public Methods:

virtual void sodl::EngineStand::addHold(double t) - This routine adds a hold at time t to the holdList.

virtual ulong sodl::EngineStand::engineCount(void) - This routine returns the number of engines in the

engineList vector.

188

virtual double sodl::EngineStand::getGlobalVT(void) - Returns to the calling routine the value gvt.

virtual sodi::ViewManager& sodl::EngineStand::getViewManager(void) - This routine returns a

reference to the view manager controlling the engine stand.

virtual bool sodl::EngineStand::holding(void) const - Returns true exactly when all of engines controlled

by this stand are holding due to the earliest remaining holdList item.

virtual bool sodl::EngineStand::idle(void) - When the view manager has some idle time, it will call

idleo. When *vm refers to a sodl::TextViewManager instance, the method is called until this method

returns false (indicating that it has no more messages to process). When the controlling view manager is a

sodl::GLUTViewManager instance, this method is called whenever the GLUT sub system has idle time.

virtual double sodl::EngineStand::nextHold(void) - This routine returns the time of the next hold to the

calling routine. If there are no holds pending, it returns sodl::Clock::getEndTimeO*2.0.

virtual sodl::Engine& sodl::EngineStand::operator[](ulong n) - This method returns engineList[n]. If

the simulation has not yet started, and n is outside the range of the array, then the engine list is resized,

prior to returning the specific engine instance. If the simulation has already started and n is outside of the

range of the engine list, it throws an Exception::RangeError.

virtual void sodl::EngineStand::setup(sodl::ViewManager& v) - This method just sets vm variable to

&v.

virtual void sodl::EngineStand::start(void) - This methods calls the start methods for each of the engines

in the engineList vector. It also sets to true the start flag.

virtual void sodl::EngineStand::transmit(sodl::Message& msg) - This routine will forward a message to

all engines with processes listed in the message destination list. If the engine is not locally controlled, the

engine stand forwards it to the proper node in the distributed simulation.

189

B.2.13. sodl::GLUTViewManager

This class provides a framework allowing the GL Utility Toolkit (GLUT) to perform two and three-

dimensional displays of simulation output and minimal support for allowing users to provide inputs to the

simulation. Use of sodl::GLUTViewManager is specified by using the -dglut option in the SODL parser,

sp. The sod::GLUTViewManager makes use of the gvm::View class to perform actual 10 operations.

Parent Classes: public sodh :ViewManager

Derived Classes: None

Protected Data Members:

std::vector<gvm::View*> sod::GLUTViewManager::viewMap - The collection of GLUT windows

managed by this sod::GLUTViewManager instance. Each GLUT window is provided an index, and is

referenced associatively with that index using the std::map template class.

static sodl::GLUTViewManager* sodl::GLUTViewManager::manager - This is the master view

manager for simulation instances using GLUT for the system 10. This static instance is required because

the callbacks from the various GLUT routines require calls to static methods. By retaining a static pointer,

those static methods can access the view list to notify individual view instance of 10 events.

Public Constructors:

sodl::GLUTViewManager::GLUTViewManager(sodl::IdleListener& 1, int* argc, char*[] argv) - GLUT

can process command line arguments to specify certain GLUT-specific aspects of the graphics interface.

This constructor (which receives the values from the main program) passes the command line arguments

here, and this method then passes them on a routine GLUT uses to parse input parameters, and pare out

GLUT options specified therein. The parameters GLUT uses will be removed from the command line

argument list before returning from the constructor. It will also invoke the parent class constructor by

calling sodl: :ViewManager:: ViewManager(l, argc, argv).

Public Methods:

190

virtual void sodl::GLUTViewManager::activateEntryListener(bool v) - This starts listening for GLUT

mouse window entry events when v is true, or deactivates listening for GLUT mouse window entry events

when v if false.

virtual void sodl::GLUTViewManager::activateKeyboardListener(bool v) - This starts listening for

GLUT keyboard events when v is true, or deactivates listening for GLUT keyboard events when v if false.

It activates or deactivates both the key press and key release callback listeners.

virtual void sodl::GLUTViewManager::activateMouseListener(bool v) - This starts listening for GLUT

mouse button events when v is true, or deactivates listening for GLUT mouse button events when v if

false.

virtual void sodl::GLUTViewManager::activateMotionListener(boo v) - This starts listening for GLUT

active mouse motion events when v is true, or deactivates listening for GLUT active mouse motion events

when v if false.

virtual void sodl::GLUTViewManager::activateOverlayListener(bool v) - This starts listening for GLUT

overlay events when v is true, or deactivates listening for GLUT overlay events when v if false.

virtual void sodl::GLUTViewManager::activatePassiveMotionListener(bool v) - This starts listening for

GLUT passive mouse motion events when v is true, or deactivates listening for GLUT passive mouse

motion events when v if false.

virtual void sodl::GLUTViewManager::activateReshapeListener(boo v) - This starts listening for GLUT

reshape events when v is true, or deactivates listening for GLUT reshape events when v if false.

virtual void sodl::GLUTViewManager::activateSpecialListener(bool v) - This starts listening for GLUT

special keyboard events when v is true, or deactivates listening for GLUT special keyboard events when v

if false.

virtual void sodl::GLUTViewManager::activateVisibilityListener(bool v) - This starts listening for

GLUT visibility events when v is true, or deactivates listening for GLUT visibility events when v if false.

191

virtual void sodl::GLUTViewManager::addView(gvm::View& v) - This sets viewMap[v.getWindowO] to

&v. If necessary, the view map is resized to allow the new view to be added. The gvm::View instance is

responsible for creating the GLUT window and retaining the proper value for that window's index.

static void sod::GLUTViewManager::display(void) - Callback function for handling GLUT display

request events. It calls (*manager)[glutGetWindowO].displayO.

static void sod::GLUTViewManager::entry(int state) - Callback function for handling GLUT window

entry and exit events. State is the type of event (entry or exit). It calls

(*manager)[glutGetWindowO].entry(state).

static void sodl::GLUTViewManager::idle(void) - Callback function for handling GLUT idle events,

when GLUT is not busy handling other events. It makes a call to (*manager).idleListener.idleO allowing

the simulation to progress.

static void sodl::GLUTViewManager::keydown(unsigned char key, int x, int y) - Callback function for

handling GLUT key press events. The parameter key contains the key press value, and (x, y) is the screen

position of the mouse at the time of the keyboard event. It calls

(*manager)[glutGetWindowO].keydown(key, x, y).

static void sodl::GLUTViewManager::keyup(unsigned char key, int x, int y) - Callback function for

handling GLUT key release events. The parameter key contains the value of the released key, and (x, y) is

the screen position of the mouse at the time of the keyboard event. It calls

(*manager)[glutGetWindowO].keyup(key, x, y).

static void sodl::GLUTViewManager::motion(int x, int y) - Callback function for handling GLUT active

mouse motion events (i.e. with a mouse button depressed). (x, y) is the location of the mouse cursor. It

calls (*manager)[glutGetWindowO].motion(x, y).

static void sodl::GLUTViewManager::mouse(int button, int state, int x, int y) - Callback function for

handling GLUT mouse events, button is the button number that had the event, state is the button state, and

(x, y) is the location of the mouse cursor. It calls (*manager)[glutGetWindowO].mouse(button, state, x, y).

192

virtual gvm::View& sodl::GLUTViewManager::operator[](ulong n) - Returns the gvm::View instance

given by viewMap[n].

static void sodl::GLUTViewManager::overlay(void) - Callback function for handling GLUT overlay

events. It calls (*manager)[glutGetWindowO].overlay(.

static void sodl::GLUTViewManager::passivegmotion(int x, int y) - Callback function for handling

GLUT passive mouse motion events (i.e. with no mouse button pressed). (x, y) is the location of the

mouse cursor at the time the event occurred. It calls (*manager)[glutGetWindowO].passivemotion(x, y).

static void sodl::GLUTViewManager::reshape(int width, int height) - Callback function for handling

GLUT window reshape events. The new width and height are given by the parameters width and height

respectively. It notifies the gvm::View instance of the change by calling

(*manager)[glutGetWindowO].mouse(width, height).

static void sodl::GLUTViewManager::specialdown(int key, int x, int y) - Callback function for handling

GLUT special key press events, key is the value of the key that was pressed, and (x, y) is the location of the

mouse cursor at the time of the key press event. It calls (*manager)[glutGetWindowO].specialdown(key,

x, y).

static void sodl::GLUTViewManager::specialup(int key, int x, int y) - Callback function for handling

GLUT special key release events, key is the value of the key that was released, and (x, y) is the location of

the mouse cursor at the time of the key release event. It calls

(*manager)[glutGetWindow(].specialup(key, x, y).

virtual void sodl::GLUTViewManager::start(void) - Performs some initialization for starting up GLUT.

This initialization involves establishing all of the listeners for various mouse, keyboard, and idle events. It

then calls ::glutMainLoopO to start the simulation.

static void sodl::GLUTViewManager::visible(int vis) - Callback function for handling GLUT window

visibility change events. It notifies the gvm::View instance of the change by calling

(*manager)[glutGetWindowO].mouse(button, state, x, y).

193

B.2.14. sodl::Handle

Handles are used in this system to reference and identify process and message instances. They are

composed of two parts, a node and an index. Each process has a unique (in that no other process has the

same) <node, instance> pair. Similarly, each message has a unique <node, instance> pair.

Parent Classes: public sod: :Defs

Derived Classes: None.

Private Data Members:

ulong sodl::Handle: :node - Node value for the handle.

ulong sodl::Handle::index - Index value for the handle.

Public Constructors:

sodl::Handle::Handle(ulong n, ulong i) - Initializes node and index to n and i respectively.

Protected Methods

virtual void sodl::Handle::setNode(long n) - Sets the node to n.

virtual void sodl::Handle::setlndex(long i) - Sets the index to i.

Public Methods:

virtual long sodl::Handle::getNode(void) const - Returns the node to the calling routine.

virtual long sodl::Handle::getlndex(void) const - Returns the index to the calling routine.

virtual bool sodl::Handle::isType(ptype t) const - Returns true if this sodl::Handle instance refers to

sodl::Process instance of type t. This is accomplished by performing the call

sodl: :EngineStand: :stand[node][indexl.isType(t).

194

B.2.15. sodl::ldleListener

This is the base (abstract) class used by sodl::ViewManager to manage interactions between the user and

the simulation engine.

Parent Classes: public sodl::Defs

Derived Classes: sodl::EngineStand

Public Constructors:

sod::IdleListener::IdleListener(void) - This is the default class constructor for the sodl::IdleListener

class. It does not perform any special initialization.

Public Methods:

virtual void sodl::IdleListener::start(void)=O - This abstract method is meant to be overloaded with

simulation instance specific initialization routines.

virtual bool sodl::IdleListener::idle(void)=O - This abstract method is meant to be overloaded with

simulation instance specific instructions that run the simulation system through one iteration.

B.2.16. sodl::Later

This class provides an operator for comparing the time stamps of pointers to two messages. It is used in the

sodl::Engine class to properly order the messages in the event queue.

Parent Classes: public sodl::Defs.

Derived Classes: None

Public Methods:

static bool sodl::Later::comp(sodl::Message* a, sodl::Message* b) - This operator compares the time

stamps on the two message pointers. It returns true exactly when the time stamp of *a is later than the

time stamp of *b. In the event that the time stamp of the two messages are the same, the message handles

195

are used, first comparing the engine index upon which the message was initially generated, and then the

message instance number for that originating sodl::Engine instance.

virtual bool sodl::Later::operator() (sod::Message* a, sodl::Message* b) - This merely returns the value

returned by calling comp(a, b).

B.2.17. sodl::Message

This is the base class for all messages. Messages can contain data allowing information to be passed

between process instances.

Parent Classes: public sodl::Defs, public sodl::TimeStamp

Derived Classes: sodl::SystemMessage and all user defined messages.

Private Data Members:

double sodl::Message: :gen Time - Time stamp of this message instance's creation.

Protected Data Members:

sodl: :destination list sodl::Message::dest - The destination list. Each destination process is listed,

possibly more than once (in which case, the message will be delivered multiple times to the same process)

in a compact form that allows rapid discovery of the destination engines and the processes on those engines

listed as message recipients.

sodl::Handle sodl::Message::me - This is the message identifier. It is used to revoke messages when an

inconsistent simulation state is encountered.

bool sodl::Message::preempt - This flag is normally false. If this flag is true, none of the default

destination processes in the node header generating the message will be added after the node has completed

the process state changes and message formatting. It will instead send only to the destinations in the

destination list specified at the end of the node execution. The flag is normally set to false if the

clearDestO method has been called somewhere in the node body.

196

process sodl::Message::source - This is the handle for the message's source process.

bool sodl::Message::timestampOverride - This is set to true if the time stamp value has been changed

from inside the node body where the message originates. This is only of concern when a default message

time stamp value is specified in the node declaration.

bool sodl::Message::tx - tx is an abbreviation for transmit. This is normally true.

sodl::ProcessController::transmit(sodl::Message&) will check this value. If it is true, then the message

will be forwarded to the intended recipients. If it is false, the message is discarded.

rtype sodl::Message::type - This contains the type information for the message instance.

Protected Constructors:

sodl::Message::Message(long n, long i, sodl::mtype t) - This constructor performs the initialization of the

message by invoking the various constructors for the parent class and member variables. A call to the

constructor sodl::TimeStamp(-sodl::Clock::getEndTimeO, n) initializes the parent class. The call me(t, n,

getEngineO.getNextMessageO) initializes the message handle. The message source is initialized by

source(n, i). genTime is initialized to the current simulation time. Flag values tx, preempt, and

timestampOverride are initialized to true, false and false respectively.

sodl::Message::Message(const process& p, sodl::Handle h, rtype ty, double t)- This constructor is used

for some sodl::SystemMessages, notably the sodl::AntiMessage to set the various parameters of the

message instance to the same as another message of some other type. Parent class initialization is

performed through a call to the parent constructor, sodl::TimeStamp(t, p.getNodeo). The message handle

me is initialized with the copy constructor by setting it to h and type is set to ty. source, the message source

is also initialized with its copy constructor to p. genTime is initialized to the current simulation time. Flag

values tx, preempt, and timestampOverride are initialized to true, false and false respectively.

Public Constructors:

Protected Methods:

197

virtual void sodl::Message: :init(void) - This method is intended to be overloaded by a simulation system

developer to allow initialization of a message's content prior to being passed as a parameter to the process

node that will eventually send the message. It does nothing in the sodl::Message class itself, however.

virtual sodl::destinationlist& sodl::Message::getDest(void) - This returns a reference to the message's

destination list.

Public Methods:

virtual void sodl::Message::addDest (process p) - Inserts the p into the destination list, dest.

virtual void sodl::Message::addDest (std::vector<process> p) - Inserts into the destination list, dest, all of

the process instances in p.

virtual void sodl::Message::elearDest(void) - This clears the message destination list,

sodl::destination-list::dest, and sets the preempt to true.

virtual sodl::Message& sodl::Message::copy (long n)=O - This abstract message is supposed to be

overloaded by derived classes. It returns a copy of the message instance *this and assigns its engine to

sodl::EngineStand::stand[n], which will manage it. This is used primarily when messages are transmitted

from one sodl::Engine instance to another.

virtual sodl::Message& sodl::Message::copy (void)=O - This abstract method is intended to be

overloaded by derived classes to returns a copy of *this to the calling routine.

virtual double sodl::Message::getGenTime(void) const - Returns the message generation time stamp,

genTime, to the calling routine.

virtual message sodl::Message::getlD(void) const - Returns me to the calling routine.

virtual ulong sodl::Message::getlndex(void) const - Returns me.getlndexO to the calling routine.

virtual ulong sodl::Message::getNode(void) const - Returns me.getNodeO to the calling routine.

198

virtual process sodI::Message::getSource(void) - Returns source to the calling routine.

virtual bool sodl::Message: :getTX(void) - Returns true exactly when the destination list is not empty and

the tx flag is true.

virtual sodl::mtype sodl::Message::getType(void) const - Returns to the calling routine the value

returned from calling me.getTypeO.

virtual bool sodl::Message::isPreempted(void) const - Returns to the calling routine the value in the

preempt flag.

virtual bool sodl::Message::isType(sodl::mtype t) const - Returns true if and only if this message

instance is of type or of sub-type t.

virtual void sodl::Message::serialize(std::ostream& os) const - Writes to the stream os a textual

representation of the message instance.

virtual void sodl: :Message::setTX(bool TX) - Sets the value tx to TX.

virtual void sodl: :Message: :setPreempted(bool p) - Sets preempt to p.

virtual void sodl::Message::setTime(double t) - Sets the value of the message time stamp override flag,

timestampOverride, to true, indicating that it should not be set to the default value in the node header

declaration sending this message instance, and calls setTime(t).

virtual bool sodl::Message::timeOverride(void) - Returns to the calling routine the value in

TimestampOverride.

static void sodl: :Message: :typelnit(sodl::mtype t) - Performs type data initialization used in ascertaining

the type of message instance that is transmitted.

199

B.2.18. sodl::MessageHandle

This class serves as an identifier for message instances. It primarily provides a mechanism to distinguish

between message handles and those for processes, since process handles provide a little more functionality.

Parent Classes: public sodh :Handle.

Derived Classes: None

Public Constructors:

sod::MessageHandle::MessageHandle(ulong n, ulong i) - Calls sodl::Handle(n, i).

B.2.19. sodl::Process

This is the parent class for all process constructs. It provides the basic functionality associated with all

processes.

Parent Classes: public sodh: TimeStamp, public sodl::Defs

Derived Classes: All user-defined processes.

Private Data Members:

bool sodl::Process::collected - This is set to true when the sodl::Process instance has had its

fossilCollectO method is called. This allows the instance to be retained after the initial fossil collection so

that its state can be recovered in the event that it is needed in a rollback.

sodl::ProcessController* sodl::Process::controller - This is a pointer to the controller governing this

process.

Protected Data Members:

process sodl::Process::me - This is a sodl::Handle instance with handle information about this process

instance.

200

virtual void gvm::SetCubeSize::send(void) - This methods actually sets the size attribute of the

destination gvm::Cube instance.

B.4.23. gvm::SetCylinderSize

The gvmn::SetCylinderSize message is intended to set the size attributes of a gvm:: Cylinder instance.

Parent Classes: public gvm::Message

Derived Classes: None

GLdouble gvmn::SetCylinderSize::radius - Value to set the radius attribute of the destination

gvm: :Cylinder instance.

GLdouble gvm::SetCylinderSize::length - Value to set the length attribute of the destination

gvm::Cylinder instance.

GLint gymn::SetCylinderSize::sides - Value to set the side count attribute of the destination gvm::Cylinder

instance.

GLint gvm::SetCylinderSize::rings - Value to set the ring count attribute of the destination gvm::Cylinder

instance.

Public Constructors:

gym: :SetCylinderSize: :SetCylinderSize(gvm:: :View& v, double t, gym: :object index i, GLdouble ir,

GLdouble or, GLint s, GLint r) - This constructor calls the parent class constructor grm: :Message(v, t,

GVMSetCylinderSize, i) and initializes innerRadius, outerRadius, sides, and rings to ir, or, s, and r

respectively.

Public Method:

virtual void gym::SetCylinderSize::send(void) - This method commits the changes in the various

attributes of the destination gvm::Cylinder instance.

300

static sodl::Random sodl::Process::rand - Random number generator for all sodl: :Process instances.

sodl: :ptype sodl::Process::type - Contains the type information for the specific process instance.

Protected Constructors:

sodl::Process::Process(ulong n, ulong i, sodl::ptype t) - This constructor calls the parent class constructor

sod:: TimeStamp(-Clock::getEndTimeO, n). It also calls the constructor for the process handle me(n, i),

sets type to t and collected to false.

Private Methods:

virtual void sodl::Process::setCollected(bool c) - Sets collected to c.

virtual bool sodl::Process::isCollected(void) - Returns collected to the calling routine.

Protected Methods:

virtual void sodl::Process::instancelnit(void) - The SODL parser, sp, will overload this function to

perform instance specific initialization of various data members within the process definition. The

simulation developer should not overload it.

Public Methods:

virtual void sodl::Process::backup(void) - During the state saving phase of the Time Warp algorithm,

when process time stamps are increased, the old state is backed up and a new one is created. Once the new

state is created with the new time stamp, the backup method for the new process is called. The programmer

should overload this method in order to make use of this functionality and to manage aspects of the state

saving that do not fall within the confines of the Time Warp algorithm.

virtual sodl::Process& sodl::Process::copy(void)=O - This abstract method is intended to be overloaded

by derived classes so that a copy of *this can be returned to the calling routine. This is normally done for

state savings purposes in the sodl::ProcessController instances.

201

virtual void sodl::Process::fossilCollect(void) - This routine is intended to be overloaded by the

programmer. It is used to perform any irrevocable function required of the process prior to this particular

process state being reclaimed.

virtual sodl::ProcessController& sodl::Process::getController(void) - Returns to the calling routine

*controller.

virtual process sod: :Process::getlD(void) - Returns sodl::Process ::me to the calling routine.

virtual sodl::ptype sodl::Process::getType(void) - Returns to the calling routine type.

virtual void sodl::Process::init(void) - Intended to be overloaded by programmer to perform application

specific initialization.

static ulong sodl::Process::nextProcess(ulong n) - This is a convenience function returning the index of

the next process to be added to engine n. It is accomplished by returning to the calling routine

sodl: :EngineStand: :stand[n].nextProcessO.

virtual void sodl: :Process::receiver(sodl::Message& m)=O - This is overloaded by the code generated by

the SODL parser to process incoming messages. It will compare the actual message type of the reference m

to the inputs expected by the nodes in active modes. A match occurs when a node accepts messages that

are of the same type as m or a parent message type of m. When this occurs, the message is passed to the

proper routine within the SODL parser generated code to handle the message. The process controller

reference is passed since it is responsible for filtering messages and ensuring they are forwarded to the

intended destinations.

virtual void sodl::Process::restore(void) - When a rollback occurs, a previous state is restored. That state

for the process has its restore process called to perform any process specific rollback processing that might

be required.

virtual void sodl::Process::serialize(std::ostream& os) const - This method allows a textual

representation of the process state to be sent to the stream os.

202

static void sodl::Process::typelnit(sodl::ptype t) - Initialize process type relations.

B.2.20. sodl::ProcessController

This class provides the basic functionality of the sodl::ProcessController instances. It is used to manage

the flow of messages into an individual process.

Parent Classes: public sodl::Defs

Derived Classes: None

Private Data Members:

std::deque<sodl::Process*> sodl::ProcessController::stateQueue - This is the collection of SODL

process states representing the state of the process at different points of time. Most recent states are at the

back of the std::deque, and earlier ones are at the front. Fossil collection is done from the front, while any

inbound messages are always delivered to the back element.

Public Constructors:

sodl: :ProcessController: :ProcessController(sodl: :Process& p) - Calls constructor id(p.getlDO.getNodeO,

p.getIDO.getlndexO, p.getTypeO). It then inserts &p into the back of the stateQueue and registers this

instance with the controlling sodl::Engine instance.

Protected Methods:

virtual void sodl::ProcessController::backup(double t) - This routine will back up the first state in the

stateQueue by inserting a copy of it at the back of that data structure. That copy will have its time stamp

set to time t and its backup method will then be called. This is performed in accordance with the state

saving phase of the Time Warp algorithm.

virtual void sodl::ProcessController::displayStateQueue(std::ostream& os) const - This is a routine

which will send a formatted textual version of all the members of the stateQueue to stream os.

203

virtual void sodl::ProcessController::fossilCollect(double t) - This routine performs incremental fossil

collection. The controller first finds the sodl::Process instance with time stamp t in stateQueue. If exists,

this routine will call its sod::Process::fossilCollectO and set its sodl::Process::collected flag is set to

indicate that it has been collected. Any elements of the state queue with time stamp values less than t are

then removed from the queue and the memory they use is reclaimed. The element that was just collected

remains until this sodl::ProcessController instance is tasked with another fossil collection.

virtual sodl::Engine& sod::ProcessController::getEngine(void) - This uses the process handle to

retrieve a reference of the engine controlling this controller. The actual call is

EngineStand: :stand[id.getNodeO].

virtual void sodh :ProcessController::rollback(double t) - This routine causes a rollback to time t to occur

for the process this sodl::ProcessController controls. This is accomplished by removing elements from the

back of the controller's state queue, stateQueue, until the back element had a time stamp value that is

strictly less than t.

Public Methods:

virtual process sodl::ProcessController::getlD(void) - Returns to the calling routine stateQueue.backO-

>getiDO.

virtual void sodl::ProcessController::init(void) - Calls the init method for the back element in

stateQueue.

virtual void sodl: :ProcessController::receive(sodl::Message& msg) - This routine will perform a backup

of the back element of stateQueue if the time stamp of that element is strictly less than the time stamp of

msg. It should not normally happen that the back element of the state queue has a timestamp which is

strictly greater than that of msg, since the sodl::Engine that is now transmitting msg should have requested

an engine-wide rollback to the proper time upon receipt of msg.

virtual void sodl::ProcessController::serialize(std::ostream& os) const - This routine provides a

mechanism for providing formatted textual output to stream os.

204

virtual void sodl::ProcessController::transmit(sodl::Message& msg) - The back process in the state

queue may elect, upon receipt of a message, to transmit new messages in response. That sodl::Process

instance calls this method in that case, passing all outbound messages singly as the parameter. The first

thing that is done is to ascertain whether to actually send the message. This is done by doing so only if

msg.getTXO returns true. It also checks to see if the time stamp on the outgoing message is strictly greater

than the current simulation time. If it is not, it could lead to an infinite loop and abnormal termination of

the simulation run, so it is increased slightly in accordance with Equation 6-1. After this has been

completed, the message is then forwarded to the controlling sodl::Engine instance for further processing.

B.2.21. sodl::ProcessHandle

This is primarily a minor extension of the sodl::Handle class. Though it does not contain any type

information, it can be used to obtain type information about the process associated with this handle.

Parent Classes: public sodl::Handle

Derived Classes: None

Public Constructors:

sodl::ProcessHandle::ProcessHandle(ulong n, ulong i) - This constructor calls the parent constructor

sodl: :Handle(n, i).

Public Methods:

virtual sodl::Defs::ptype sodl::ProcessHandle::getType(void) const - Returns to the calling routine type.

Referencing the type information available from the process controller associated with this process handle

does this. The actual value returned is sodl::EngineStand::stand[node][index].getTypeO.

virtual bool sodl::ProcessHandle::isType(sodl::ptype t) const - This routine will return true if and only

if the type associated with the process is type t or a sub-type of t. Referencing the type information in the

process controller associated with this handle does this. The value returned is

sodl: :EngineStand: :stand[nodel[index].isType(t).

205

B.2.22. sodl::ProcessMode

Each mode declared in a SODL process becomes a sodl::ProcessMode instance in the associated C++

class. Prior to a message being delivered to a node, its parent mode must be polled for its activity level.

This class provides the means for doing this.

Parent Classes: public sodl::Defs, public sodl::TimeStamp

Derived Classes: None

Private Data Members:

bool sod::ProcessMode::active - Current state of the mode.

bool sodl::ProcessMode::newActive - State of the mode after the next time stamp change.

Public Constructors:

sod::ProcessMode::ProcessMode(ulong n) - This constructor initializes both of the member variables

sod::ProcessMode::active and sod::ProcessMode::newActive to true and calls the parent constructor

sodl: :TimeStamp(-Clock: :getEndTimeO, n).

Public Methods:

virtual bool sodl::ProcessMode::isActive(void) const - Returns to the calling routine

sod! :ProcessMode: :active.

virtual void sodl::ProcessMode::serialize(std::ostream& os) const - Produces formatted textual output

representing the state of this sodl::ProcessMode instance to stream os.

virtual void sodl::ProcessMode::setActive(bool a) - This will set the member variable newActive to a.

When the time stamp is updated, the this value will be copied to the active member variable.

virtual void sod::ProcessMode::setTime(double t) - This will first make an explicit call to the parent

class version, sod::TimeStamp::setTime(t). It then copies the value in newActive to active.

206

B.2.23. sodl::ProfileTools

This class is useful for timing the duration of various activities. It provides a processor-time clock to

measures elapsed processor time since a reset or instantiation.

Parent Classes: public sodl::Defs

Derived Classes: None

Protected Data Members:

:clockt sodl::ProflleTools::time - Time of instantiation or last reset.

Public Constructors:

sodl: :ProfileTools: :ProfleTools(void) - Calls sodl: :ProfileTools: :resetTimeO.

Public Methods:

virtual void sodl::ProfileTools::resetTime(void) - Sets the time to the current time using ::clocko.

virtual double sodl::ProfileTools::elapsedTime(void) - Returns the elapsed processor time (in seconds)

since time was last set (i.e. ::clockO-time).

B.2.24. sodl::Random

This uses the standard C random number generator (::rando and ::srandO for seeding) allowing users to

uniformly distributed pseudo-random numbers. It is not a particularly divers random number generator,

and end-users should probably consider replacing it with one that has a more varied and robust set of

features.

sodl::Random has a typedef to sodl: :rand.

Parent Classes: public sodl::Defs

Derived Classes: None

207

Public Constructors:

sodl::Random::Random(void) - Initializes the random number stream by calling ::srand((unsigned)

::time(NULL)).

explicit sodl::Random::Random(uint seed) - Initializes the random number stream by calling

::srand(seed).

Public Methods:

double sodl::Random::nextDouble(double a) - Returns a uniformly distributed double precision floating

point random number in the range [0, a).

double sodl::Random::nextDouble(double a, double b) - Returns a uniformly distributed double

precision floating point random number in the range [a, b).

int sodl::Random::nextlnteger(int a) - Returns a uniformly distributed random integer in the range [0, a).

int sodl::Random: :nextlnteger(int a, int b) - Returns a uniformly distributed random integer in the range

[a, b).

B.2.25. sodl::Scheduleltem

The sodl::Scheduleltem class is used for scheduling fossil collection events, though it could be used for

other purposes as well. It is based on the std::pair<double, ulong> class, where first represents a time

stamp, and second is an index of a process or engine that is scheduled.

Parent Classes: public std::pair<double, ulong>,public sodl::Defs

Derived classes: None

Public Constructors:

sodl::Scheduleltem::Scheduleltem(double t, ulong i) - This constructor calls the parent constructor

std::pair<double, ulong> (t, i).

208

Public Methods:

virtual double sodl::Scheduleltem::getTime(void) const - Returns to the calling routine

std: :pair<double, ulong>.first.

virtual ulong sodl::Scheduleltem::getlndex(void) const - Returns to the calling routine std: :pair<double,

ulong>.second.

virtual void sodl::Scheduleltem::serialize(std::ostream& os) const - Produces formatted textual output of

the sodl: :Scheduleltem instance to stream os.

B.2.26. sodl::StartSimulation

A sodi::StartSimulation message is sent to all processes to begin the simulation run. Its time stamp is set

to Clock::getStartTimeO, which defaults to -1.0. This value allows a significant amount of simulation

initialization prior to time 0.

Parent Class: public sodl::SystemMessage

Derived Classes: None

Public Constructors:

sodl::StartSimulation::StartSimulation(void) - This constructor calls the parent constructor by

SystemMessage::SystenMessage(O,O,sodl::Defs::SMTStartSimulation). It also sets its time stamp value

to Clock: :getStartTimeO.

Public Methods:

static void sodl::StartSimulation::typelnit(sodl::mtype t) - Called to initialize portions of the

std::vector<bool> sodl: :Defs::msgTypes.

209

B.2.27. sodl::SystemMessage

There are a number of system-defined messages that manage various aspects of the SODL run-time system.

These system-defined messages are all derived from the sodl::SystemMesage class.

Parent Class: public sodl::Message

Derived Classes: sodl::AntiMessage, sodl::EndSimulation, sodl::StartSimulation, sodl::UpdateGVT

Protected Constructors:

sodl::SystemMessage::SystemMessage(ulong n, ulong i, sodl::mtype t) - This constructor calls the parent

class constructor sodl: :Message(n, i, t).

sodl::SystemMessage::SystemMessage(const process& p, message h, mtype ty, double t) - This

constructor calls the parent class constructor sodl::Message(p, h, ty, t).

Public Methods:

static void sodl::SystemMessage::typelnit(sodl::mtype t) - Called to initialize portions of the

std::vector<bool> sod: :Defs::msgTypes.

bool sodl::SystemMessage::getTX(void) - Overloaded to always return true.

B.2.28. sodl::TextViewManager

This is the default view manager for a simulation engine. It is a bare bones manager providing no support

beyond handling idle events.

Parent Classes: public sodl::ViewManager

Derived Classes: None

Public Constructors:

210

sodl::TextViewManager::TextViewManager(sodl::IdleListener& 1, int* argc, char*[] argv) - This

constructor will invoke the parent class constructor by calling sodl::ViewManager(l, argc, argv). In this

case, both argc and argv are ignored. They are retained primarily for the benefit of other classes derived

from sod:: ViewManager.

Public Methods:

virtual void sodl::TextViewManager::start(void) - Calls idleListener.startO followed by repeatedly

calling idleListener.idleO until it returns false.

B.2.29. sodl::TimeStamp

This sod::TimeStamp class provides a mechanism for time stamping items within the simulation system.

These items requiring time stamps are messages, processes, and some other internal classes. Each time

stamp value is with reference to a specific sodl::Engine instance. For a given process, this engine is the

one that controls the process. For messages, it is the engine where the message will eventually be

delivered, Messages also have a generation time that is relative to the engine where the message

originated.

Parent Classes: None

Derived Classes: sodl::Clock, sodl::Message, sodl::Process, sodl::ProcessMode

Private Data Members:

double sod::TimeStamp::time - Actual time value of the time stamp.

ulong sodl::TimeStamp::node - Index of the engine to which the time is relative

Public Constructors:

sodl::TimeStamp::TimeStamp(double t, ulong n) - Sets time to t and node to n.

Public Methods:

211

virtual double sodl::TimeStamp::getTime(void) const - Returns to the calling routine

sodl::TimeStamp: :time.

virtual sodl::Engine& sodl::TimeStamp::getEngine(void) - Returns to the calling routine

sodl: :EngineStand: :stand[node].

virtual ulong sodl::TimeStamp::getNode(void) const - Returns to the calling routine node.

virtual void sodl::TimeStamp::setTime(double t) - Sets time to t.

virtual void sodl::TimeStamp::setEngine(const sodl::Engine& e) - Sets node to e.getNodeO.

virtual void sodl::TimeStamp::setEngine(ulong n) - Sets node to n.

B.2.30. sodl::Trace

The sodl::Trace class is used to perform procedure call tracing. It requires a bit of effort to set up, but the

entire SODL run-time system has instrumentation to trace program execution and log the execution to a file

if desired. This is done through a stack mechanism. Upon entering a procedure, the programmer calls the

enter(...) method to log the fact that the entry occurred. Immediately prior to leaving the routine, the

programmer makes a call to leave(...) with the same parameters as the matching leave(...).Trace will note

any discrepancies. Programmers can also turn on and off tracing in specific routines without regard to any

other part of the program.

We should note that the sodl::Trace class member data and methods are only defined when the macro

-TRACE is defined. Programmers wishing to make use of the routines here will need to delimit their calls

with "#ifdef _TRACE" ... "#endif".

Parent Class: None

Derived Classes: sodl: :Defs, gvm: :Object, gym::View.

Private Data Members:

212

static std::ostream* sodl::Trace::active - Pointer to the currently active output stream.

static std::stack<std::pair<bool, std::string> >* sodl::Trace::calls - Stack containing the call trace of the

program. The calls.topO.first controls where the output is directed, IdevInull for false, and trace.log for

true.

static along sodl::Trace::indentCount - The count of the number of pairs in the calls stack that have true

for the first component of the stack element. This is used for computing how far to indent each line of

output the sodl': Trace class methods produce.

static std::ofstream* sodl::Trace::null - A pointer to an output file stream which dumps the output to

IdevInull.

static std::ofstream* sodl::Trace::trace - A pointer to an output file stream directing output to the local

file trace.log.

Private Methods:

static void sodl::Trace::staticlnit(void) - Allocates the various data structures described above, and sets

active to direct output to trace.log as the default. It also initializes indentCount to 0.

Public Methods:

static void sodl::Trace::enter(bool d, std::string s) - This method should be called upon entry into a block

of code, normally a function or class method. The input parameters d and s are paired and pushed onto the

top of calls. If the input parameter d is true, active is set to direct output to trace.log and it increments by 2

indentCount; if d is false, active directs output to IdevInull. The string s is then formatted and sent to the

active output stream

static std::string sodl::Trace::indent(void) - This routine returns a string of spaces indentCount

characters long.

213

static void sodl::Trace::leave(bool d, std::string s) - This method should be called immediately prior to

leaving a block of code, typically a function or class method that had a corresponding call to enter(...)

earlier in the program's execution. The input parameters, when paired together, should match the top

element of the call stack, calls. This is checked to ensure that entero and leave(...) statements are properly

paired. The input parameter s is appended to an indented line (as generated in indento) and sent to the

currently active output stream. If d is true, then indentCount is decremented by 2. The top element of the

calls stack is removed and the new top element is evaluated to determine where the active stream should

now point... trace.log if calls.topO.first is true, IdevInull otherwise.

static std::ostream& sodl: :Trace: :line(void) - This produces a line in the currently active log file which is

indented and prefaced with "-". The return stream is the active stream.

static std::ostream& sodl::Trace::tlog(void) - This simply returns * active so that the calling routine may

provide non-indented text to the currently active stream.

static void sodl::Trace::stackTrace(std::ostream& os) - This routine makes a copy of the current calls

stack and dumps that copy to the stream os.

B.2.31. sodl::UpdateGVT

The sodl::UpdateGVT message class is intended to act as a catalyst for computation of the Global Virtual

Time (GVT). It notifies the various sodl::EngineStand instances in a distributed simulation to begin

computing the GVT.

AS OF THIS WRITING, THIS CLASS IS NOT USED.

Parent Classes: public SystemMessage

Derived Classes: None

214

B.2.32. sodl::ViewManager

The view manager is an abstract class declaration, the subclasses of which are intended to manage certain

aspects of the 10 operations between the user and simulation engine. It requires a sod::IdleListener

instance, which is normally a sodl::EngineStand instance. When a simulation system is produced using

the SODL system, exactly one sodl::ViewManager instance is created on each node in the distributed

simulation.

Parent Classes: public sodh :Defs

Derived Classes: sodh :GLUTViewManager, sodl::TextViewManager.

Protected Data Members:

sodh :IdleListener& sodl: ViewManager::idleListener - During idle times the method idleListener.idleOis

called, allowing the simulation to process some of the pending messages.

Public Constructors:

sodl::ViewManager::ViewManager(sodl::IdleListener& 1, int* argc, char** argv)- Sets idleListener to 1.

The remaining arguments are for sub classes to perform initialization from command line parameters.

Public Methods:

virtual void sodl::ViewManager::start(void)=O - This function is intended to be overloaded by a subclass.

Its functionality should include at a minimum performing last minute initialization and call the

idleListener.startO method. It also starts some mechanism whereby idleListener.idleO is repeatedly called

to allow the simulation to proceed.

B.2.33. SODL run-time system items not associated with a specific class

Parent Classes: N/A

Derived Classes: N/A

215

Typedefs:

typedef unsigned char ::byte - Shorthand for unsigned char.

typedef unsigned int ::uint - Shorthand for unsigned int.

typedef unsigned long ::ulong - Shorthand for unsigned long.

typedef sodl:MessageHandle sodl::message - Shorthand for sodl:MessageHandle class instance as they

apply to sodi: Message instances.

typedef sodi: :ProcessHandle sodi: :process - Shorthand for sodi: :ProcessHandle class instance as they

apply to sodi: :Process instances.

typedef sodi: :Defs: :Message Type sodi: :mtype - This typedef is for specifying a shorthand notation for the

sodi: :MiniProcess: :Message Type enumerator.

typedef sodI: :Profile Tools sodl: :profile - Shorthand for a sodI: :Profile Tools class instance.

typedef sodl::Defs::Process Type sodl::ptype - This typedef is for specifying a shorthand notation for the

sodI: :MiniProcess: :ProcessType enumerator.

typedef sodi: :Random sodi: :rand - Shorthand for a sodi: :Random class instance.

typedef std: :priority jjueue<sodl: :Scheduleltem, std: :vector<sodl: :Scheduleltem>,

std::greater<sodl::Scheduleltem> > sodl::schedule - This provides a convenience declaration for a

schedule of fossil collection events.

Functions:

Wstdl:ting : :alpha(const bool v) - This returns the string "true" when v is true and "false" when v is false.

template<class T> T dot(std: :valarray<T> x, std: :valarray<T> y) - Returns the dot product of x and y.

mnt ::main(int argc, char *argv[]) - Start point for the simulation program execution.

216

template<class T> std: :vector<T> ::make-vector(ulong s, T v, ..)-This routine will create new vector of

size s with the parameters starting with v.

template <class T> T ::max(T x, T y) - Returns the maximum value of x and y. Type T must have

defined the operator'<'.

template <class T> T :min(T x, T y) - Returns the minimum value of x and y. Type T must have defined

the operator'<'.

template<class T> T norm (std::valarray<T> x) - Returns the 2-norm of x (i.e. sqrt(dot(x, x)).

std::ostream& ::operator«(std::ostream& os, const sodl::Defs& v) - This routine calls v.serialize(os).

std::ostream& ::operator«(std::ostream& os, const sodl::Defs* v) - This routine calls (*v).serialize(os).

std::ostream& ::operator«(std::ostreamn& os, const sodi:: mtype t) - This routine sends to the output

stream os a string representation of t given by the value sodi: :Defs: :msgNamnes[t].

std: :ostream & : :operator«<(std: :ostream & os, const sodi: :ptype t) - This routine sends to the output

stream os a string representation of t given by the value sodl::Defs::procNames[t].

std::ostream& ::operator«(std::ostreamn& os, const sodl::Exception::Nonspecific& e) - This routine

calls eserialize(os) to produce output related to an exception.

template <class T, class A> std::ostreamn& ::operator<(std::ostream& os, const std::deque<T,A>& v)

- Produces formatted textual output of the components of a std::deque class instance. There must be a

::operator«(std::osreamn&, const T&) declared somewhere allowing each component in the container to

be displayed.

template <class T, class A> std: :ostream & : :operator«<(std: :ostream & os, const std: :lst<T,A>& v) -

Produces formatted textual output of the components of a std: :list class instance. The operator

::operator«(std::ostream&, const T&) must be declared somewhere allowing each component in the

container to be displayed.

217

template <class K, class T, class C, class A> std::ostream& ::operator<<(std::ostream& os, const

std::map<K,T,C,A>& v) - Produces formatted textual output of the components of a std::map class

instance. The operators ::operator<<(std::ostream&, const K&) and ::operator<<(std::ostream&, const

T&) must both be declared somewhere allowing each component in the container to be properly displayed.

The output is sorted according to the sort order specified by the declaration of v.

template <class K, class T, class C, class A> std::ostream& ::operator<<(std::ostream& os, const

std::multimap<K,T,C,A>& v) - Produces formatted textual output of the components of a std::multimap

class instance. The operators ::operator<<(std::ostream&, const K&) and ::operator<<(std::ostream&,

const T&) must both be declared somewhere allowing each component in the container to be properly

displayed. The output is sorted according to the sort order specified by the declaration of v.

template <class T, class C, class A> std::ostream& ::operator<<(std::ostream& os, const

std::multiset<T,C,A>& v) - Produces formatted textual output of the components of a std::multiset class

instance. The operator ::operator<<(std::ostream&, const T&) must be declared somewhere allowing

each component in the container to be displayed. The output is sorted according to the sort order specified

by the declaration of v.

template <class T1, class T2> std::ostream& ::operator<<(std::ostream& os, const std::pair<T1, T2>&

v) - Produces formatted textual output of a std::pair class instance. ::operator<<(std::ostream&, const

T1&) and ::operator<<(std::ostream&, const T2&) must both be declared allowing each component to be

properly displayed.

template <class T, class C, class L> std::ostream& ::operator<<(std::ostream& os, const

std::priorityjqueue<T,C,L>& v) - Produces formatted textual output of a std:.priority queue class

instance. The operator ::operator<<(std::ostream&, const T&) must be declared somewhere allowing

each component in the container to be properly displayed. Since there is no iterator for std: :priorityjqueue

instances, v is copied and items are printed from the top of this copied priority queue prior to their removal.

template <class T, class C> std::ostream& ::operator<<(std::ostream& os, const std::queue<T,C>& v)

- Produces formatted textual output of the components of a std::stack class instance. The operator

218

::operator<<(std::ostream&, const T&) must be declared somewhere allowing each component in the

container to be properly displayed. Since there is no iterator for std::queue instances, v is copied and items

are printed from the top of this copied queue prior to their removal.

template <class T, class C, class A> std::ostream& ::operator<<(std::ostream& os, const

std::set<T,C,A>& v) - Produces formatted textual output of the components of a std::set class instance.

The operator ::operator<<(std::ostream&, const T&) must be declared somewhere allowing each

component in the container to be displayed. The output is sorted according to the sort order specified by

the declaration of v.

template <class T, class C> std: :ostream & : :operator<<(std: :ostream & os, const std: :stack<T,C>& v) -

T) - Produces formatted textual output of the components of a std::stack class instance. The operator

::operator<<(std::ostream&, const T&) must be declared somewhere allowing each component in the

container to be properly displayed. Since there is no iterator for st: :stack instances, v is copied and items

are printed from the top of this copied stack prior to their removal.

template <class T> std::ostream& ::operator<<(std::ostream& os, const std::valarray<T >& v) -

Produces formatted textual output of the components of a std::valarray class instance. The operator

::operator<<(std::ostream&, const T&) must be declared somewhere allowing each component in the

container to be displayed.

template <class T, class A> std::ostream& ::operator<<(std::ostream& os, const std::vector<T,A>& v)

- Produces formatted textual output of the components of a std::vector class instance. The operator

::operator<<(std::ostream&, const T&) must be declared somewhere allowing each component in the

container to be displayed.

bool ::operator>(const sodl::Handle& hl, const sodl::Handle& h2) - This routine compares two

sodl::Handle instances and returns true exactly when hl.getNodeO > h2.getNodeo, or when hl.getNodeO

h2.getNodeO and hl.getlndexO > h2.getlndexO.

219

hool ::operator>(const sodl::Message& ml, const sodl::Message& m2) - This routine compares two

sodh:Message instances and returns true exactly when ml.geffimeo > m2.getTimeo, or when

ml.getfimeo = m2.getfimeo and ml.getlD() > m2.getIDO.

boo] ::operator<(const sodi: :Handle& hi, const sodi: :Handle& h2) - This routine compares two

sodl::Handle instances and returns true exactly when hl.getNodeo < h2getNodeo, or when hl.getNodeo

= h2.getNodeo and hl.getlndexo < h2.getlndexo.

bool ::operator<(const sodl::Message& ml, const sodl::Message& m2) - This routine compares two

sodl::Message instances and returns true exactly when ml.getfimeo < m2.getTimeo, or when

ml.getfimeo = m2.getTimeo and ml.getIDO < m2.getfiDo.

bool ::operator>=(const sodl::Handle& hi, const sodl::Handle& h2) - This routine compares two

sodl::Handle instances and returns true exactly when hlgetNodeo > h2.getNodeo, or when hl.getNodeo

=h2.getNodeo and hl.getlndexo ! h2.getlndexo.

bool ::operator>=(const sodl::Message& ml, const sodl::Message& m2) - This routine compares two

sodl::Message instances and returns true exactly when ml.getfimeo > m2.getTimeo, or when

ml.getTimeo = m2.getfimeo and ml.getIDO ! m2.getfiDo.

bool ::operator<=(const sodl::Handle& hi, const sodl::Handle& h2) - This routine compares two

sodl::Handle instances and returns true exactly when hl.getNodeo < h2.getNodeo, or when hl.getNodeo

= h2.getNodeO and hl.getlndexo 5 h2.getlndexo.

bool ::operator<=(const sodl::Message& ml, const sodl::Message& m2) - This routine compares two

sodl::Message instances and returns true exactly when mi.getTimeo < m2.getfimeo, or when

ml.getfimeo = m2.getfimeo and ml.getIDO: m2.getfiDo.

bool ::operator==(const sodl::Handle& hi, const sodl::Handle& h2) - This routine compares two

sodl::Handle instances and returns true exactly when hi.getNodeo = h2.getNode() and hi.getlndex()

h2.getlndexo.

220

bool ::operator==(const sodl::Message& ml, const sodl::Message& m2) - This routine compares two

sodl::Message instances and returns true exactly when ml.getTimeO = m2.getTimeO and ml.getiDO =

m2.getlDO.

bool ::operator!=(const sodl::Handle& hl, const sodl::Handle& h2) - This routine compares two

sodl::Handle instances and returns true exactly when hl.getNodeO # h2.getNodeO or hl.getlndexO

h2.getlndexO.

bool ::operator!=(const sodl::Message& ml, const sodl::Message& m2) - This routine compares two

sodl::Message instances and returns true exactly when ml.getTimeO # m2.getTimeO and ml.getIDO

m2.getIDO.

template<class T> std: :vector<T> ::resizevector(int s, T d, std: :vector<T> v) - This routine will create a

copy of the std::vector v, resized to size s, and padded with the value d in the case that v needs to grow.

void :staticlnit(int* argc, char* argv[]) - Performs static variable initialization particularly associated

with type information in sodi::Process and sodi::Message class definitions. It also initializes the view

manager instance.

B.3. SODL - GLUT interface
There is a collection of SODL constructs used with the sodl::GLUTViewManager allowing SODL

programs to display information to a window that is not located on the local host.

This interface is implemented as a scene graph. For more detailed information on the notions of a scene

graph, refer to (Foley 1996). Simulation system developers can have multiple views, each of which

displays things completely independently. Each view owns a collection of graphics nodes each of which

having an associated affine transformation. Each of these graphics nodes can themselves have a collection

of child graphics nodes (again with their associated affine transformation) and so on. Child nodes inherit

the affine transformation of their parent by which they multiply their own so that all of its child nodes

inherit the new combined transformation. Additionally, nodes can have a collection of subordinate shapes

with different properties (color, rendering mode, etc). The aggregate affine transformation associated with

221

the owner node is applied to the shapes in order to display them in the proper orientation, scale and location

within the rendered scene.

B.3.1. message:AddNode

This serves as parent class to the two message:AddNode derivatives below. It serves little more purpose

than to act as a type placeholder.

Parent Message Construct: messageAddSubordinate

Derived Message Constructs: messageAddNode2D, message:AddNode3D

Receiving Processes: None

Sending Processes: None

B.3.2. message:AddNode2D

This message is used to add multiple process:Node2D instances to a parent process:Node2D or

process:View2D. Those receiving processes add as subordinate nodes those listed in

AddSubordinate: :subrdinates.

Parent Message Construct: message:AddNode

Derived Message Constructs: None

Receiving Processes: process:Node2D, process: View2D

Sending Processes: None

B.3.3. message:AddNode3D

This message is used to add multiple process:Node3D instances to a parent process:Node3D or

process:View3D. Those receiving processes add as subordinate nodes those listed in

AddSubordinate: :subrdinates.

222

Parent Message Construct: message:AddNode

Derived Message Constructs: None

Receiving Processes: process:Node3D, process: View3D

Sending Processes: None

B.3.4. message:AddShape

The messageAddShape construct serves as parent to message:AddShape2D and message:AddShape3D.

It serves little more purpose than to act as a type placeholder.

Parent Message Construct: message:AddSubordinate

Derived Message Constructs: message:AddShape2D, message:AddShape3D

Receiving Processes: None

Sending Processes: None

B.3.5. message:AddShape2D

This message is used to add multiple process:Shape2D instances to a parent process:Node2D. Those

receiving processes add as subordinate shapes those listed in AddSubordinate::subrdinates.

Parent Message Construct: message'AddShape

Derived Message Constructs: None

Receiving Processes: process:Node2D

Sending Processes: None

223

B.3.6. message:AddShape3D

This message is used to add multiple process:Shape3D instances to a parent process:Node3D. Those

receiving processes add as subordinate shapes those listed in AddSubordinate::subrdinates.

Parent Message Construct: message.AddShape

Derived Message Constructs: None

Receiving Processes: process:Node3D

Sending Processes: None

B.3.7. message:AddSubordinate

The message:AddSubordinate construct provides a common mechanism for adding subordinate process

references to a parent process. It contains an array of process instances that identify these subordinate

processes. These messages are sent to processes to have the members listed in subordinates.

Parent Message Construct: None

Derived Message Constructs: message:AddNode, message:AddShape, message'AddVertex, and

message:Register.

Receiving Processes: None

Sending Processes: None

Data Members:

process:subordinates[] - An array of process handles that are intended to be added to a subordinate list

managed by the recipient.

Methods:

method:add(public; void; process:n;) - Adds the process n to back of the subordinates vector.

224

methodfgetTX(public; bool;) - An overload of the sodi: :Message: :getTXO. It will return true exactly

when subordinates is not empty and sodl::Message::getTXO is true.

method:size(puhlic; ulong;) - Returns subordinates.size() to the calling routine.

B.3.8. message:AddVertex

The message:Add Vertex construct serves as parent to message:AddVertex2D and message:AddVertex3D.

It serves little more purpose than to act as a type placeholder.

Parent Message Construct: message:AddSubordinate

Derived Message Constructs: message:AddVertex2D, message:AddVertex3D

Receiving Processes: None

Sending Processes: None

B.3.9. message:AddVertex2D

This message is used to add multiple process: Vertex2D instances to a parent process:Shape2D. Those

receiving processes add as subordinate shapes those listed in AddSubordinate::subrdinates.

Parent Message Construct: message:AddShape

Derived Message Constructs: None

Receiving Processes: process:Shape2D

Sending Processes: None

B.3. 10. message:AddVertex3D

Thbis message is used to add multiple process: Vertex3D instances to a parent process:Shape3D. Those

receiving processes add as subordinate shapes those listed in AddSubordinate::subrdinates.

Parent Message Construct: message:AddShape

225

Derived Message Constructs: None

Receiving Processes: process:Shape3D

Sending Processes: None

B.3.1 1. message:AddView

This message is used to inform GUI objects that they have just been added to a view. They normally are

generated by the view after the GUI object's parent registered it with the view.

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process:Cone, process:Cube, process:Node, process:Node2D, process:Node3D,

process:Object, process:Polygon2D, process:Polygon3D, process:Shape, process:Sphere,

process:Torus, process: Vertex2D, process: Vertex3D

Sending Processes: process: View2D, process: View3D

B.3.12. message:RefreshDisplay

This message causes a recipient process: View instance to refresh its display.

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process: View

Sending Processes: process: View

226

B.3.13. message:Register

Register messages register graphics components with the view that is their parent. Normally a node will

register its child nodes and shapes. Polygons register their vertices. The objects being registered are stored

in the AddSubordinate::subrdinates.

Parent Message Construct: messageAddSubordinate

Derived Message Constructs: message:RegisterNode, message:RegisterShape, message:RegisterVertex

Receiving Processes: None

Sending Processes: None

Data Members:

gvm::object index:index((ulong) -1) - Stores object index of the sender with respect to the gvm::View

instance that will eventually get the message derived from this construct.

B.3.14. message:RegisterNode

This construct acts mainly as the type placeholder and parent construct for the two derived messages.

Parent Message Construct: message:Register

Derived Message Constructs: message:RegisterNode2D, message:RegisterNode3D

Receiving Processes: None

Sending Processes: None

B.3.15. message:RegisterNode2D

This message registers process:Node2D instances with a process:View2D. The process handles are listed

in AddSubordinate: :subrdinates.

Parent Message Construct: message:RegisterNode

227

Derived Message Constructs: None

Receiving Processes: process: View2D

Sending Processes: process:Node2D

B.3.16. message:RegisterNode3D

This message registers process:Node3D instances with a process:View3D. The process handles are listed

in AddSubordinate: :subrdinates.

Parent Message Construct: message:RegisterNode

Derived Message Constructs: None

Receiving Processes: process: View3D

Sending Processes: process:Node3D

B.3.17. message:RegisterShape

This construct acts mainly as the type placeholder and parent construct for the two derived messages.

Parent Message Construct: message:Register

Derived Message Constructs: message:RegisterShape2D, message:RegisterShape3D

Receiving Processes: None

Sending Processes: None

B.3.18. message:RegisterShape2D

This message registers process:Shape2D instances with a process:View2D. The process handles are listed

in AddSubordinate: :subrdinates.

Parent Message Construct: message:RegisterShape

228

Derived Message Constructs: None

Receiving Processes: process: View2D

Sending Processes: process:Node2D

B.3.19. message: RegisterShape3D

This message registers process:Shape3D instances with a process:View3D. The process handles are listed

in AddSubordinate: :subrdinates.

Parent Message Construct: message:RegisterShape

Derived Message Constructs: None

Receiving Processes: process: View3D

Sending Processes: process:Node3D

B.3.20. message:RegisterVertex

This construct acts mainly as the type placeholder and parent construct for the two derived messages.

Parent Message Construct: message:Register

Derived Message Constructs: message:RegisterVertex2D, message:RegisterVertex3D

Receiving Processes: None

Sending Processes: None

B.3.21. message:RegisterVertex2D

This message registers process: Vertex2D instances with a process:View2D. The process handles are listed

in AddSubordinate: :subrdinates.

Parent Message Construct: message:RegisterShape

229

Derived Message Constructs: None

Receiving Processes: process:View2D

Sending Processes: process:Shape2D

B.3.22. message:RegisterVertex3D

This message registers process: Vertex3D instances with a process:View3D. The process handles are listed

in AddSubordinate: :subrdinates.

Parent Message Construct: message:RegisterShape

Derived Message Constructs: None

Receiving Processes: process: View3D

Sending Processes: process:Shape3D

B.3.23. message:SelectiveActivate

This message is delivered to a process and allows the respective gvm::Object instances controlled by

different gvm::View instances to be selectively activated or deactivated. A process:Object instance, upon

receiving a message:SelectiveActivate will send a message:SetActive to each views[i] with the active flag

set to active[i].

Parent Message Construct: None

Derived Message Constructs: None

Receiving Processes: process:Object

Sending Processes: None

Data Members:

230

process:views[] - This is the list of process:View instances affected by the change in the active flag.

bool:active[] - Each element in this array sets the active flag in the associated process:View for the

gvm::Object corresponding to this process:Object.

Methods:

method:add(public; void; process:v; bool:a;) - This calls methods views.push-back(v) and

active.push-back(a) to insert the view and active flag for that view into their respective vectors.

method:getView(public; process; ulong:i;) - This will return the ith process instance in the view vector

(i.e. view[i]).

method:getActive(public; bool; ulong:i;) - This will return the ith process instance in the active vector (i.e.

active[i]).

method:size(public; ulong;) - This method returns the number of elements in the view array (i.e.

view.sizeo). This should also be the number of elements in the active array, and will be if method:add is

used instead of manually adding elements to the arrays.

B.3.24. message:SetActive

Upon receipt of this message, a process:Object instance will set its active flag to that of the active variable

in the message payload. It will then broadcast additional message:SetActive instances to the views with

which the process:Object instance has been registered.

Parent Message Construct: message:SetDefaultActive

Derived Message Constructs: None

Receiving Processes: process:Object, process: View

Sending Processes: process:Object

231

B.3.25. message:SetAffine

This sets various affine transform values. These allow graphical objects to be moved within a scene.

Parent Message Construct: message:SetValue

Derived Message Constructs: message:SetAffine2D, message:SetAffine3D

Receiving Processes: None

Sending Processes: None

Data Members:

GLdouhle:ctrRot[] - Specifies a center of rotation.

GLdouble:ctrScale[] - Specifies a scaling center.

GLdouble:rot[] - Specifies a rotation angle about each axis.

GLdouble:scale[] - Specifies a scaling factor along each axes.

GLdouhle:trans[] - Specifies a translation factor along each axes.

Methods:

method:set(public; void; std::vector<GLdouble>:cr; std::vector<GLdouble>:cs;

std::vector<GLdouble>:r; std::vector<GLdouble>:s; std::vector<GLdouble>:t;) - This sets ctrRot,

ctrScale, rot, scale, and trans to cr, cs, r, s, and t respectively, using ::resize-yector(...) to copy the

values and ensure that the size of the vectors remains unchanged. That is, if this message is implemented

as a message:SetAffine2D instance, each of the arrays has size 2. The ::resize-yector(...) function is

used to ensure that this size remains fixed after the assignment.

B.3.26. message:SetAffine2D

Specializes message:SetAffine for 2D affine transformations.

232

Parent Message Construct: message:SetAffine

Derived Message Constructs: None

Receiving Processes: process:Node2D, process: View2D

Sending Processes: process:Node2D

Methods:

method:init(public; void;) - Initializes the data members so that the aggregate affine transform is the

identity. This involves resizing all of the data members to 2 elements with values 0.0 (except

SetAffine::scale, which is initialized to <1.0, 1.0>).

mnethod:set~trRotation(public; void; GLdouhle:x; GLdouble:y;) -This method sets the value of

SetAffine:WcrRot to ::makej'ector(2, x, y).

mnethod:set~trRotation(public; void; std::vector<GLdouble>:v;) -This method sets the value of

SetAffine::ctrRot to ::resize-vector(2, 0.0, v).

mnet hod:set CrScale(public; void; GLdouble:x; GLdouble:y;) - This method sets the value of

SetAffine::ctrScale to ::makevector(2, x, y).

mnethod:set~trScale(public; void; std: :vector<GLdouhle>:v;) - This method sets the value of

SetAffine::ctrScale to : :resize vector(2, 0.0, v).

mnet hod :setR otation(public; void; GLdouble:x; GLdouhle:y;) - This method sets the value of

SetAffine: :rot to : :make vector(2, x, y).

method:setRotation(public; void; std::vector<GLdouble>:v;) -This method sets the value of

SetAffine::rot to ::resize vector(2, 0.0, v).

mnethod:setScale(publlc; void; GLdouble:x; GLdouhle:y;) -This method sets the value of

SetAffine::scale to ::make vector(2, x, y).

233

methodusetScale(publlc; void; std::vector<GLdouble>:v;) - This method sets the value of

Set~ffine::scale to : :resize vector(2, 1.0, v).

met hod :set Translation (public; void; GLdouble:x; GLdouble:y;) -This method sets the value of

SetAffine: :trans to ::make vector(2, x, y).

method:setTranslation(public; void; std: :vector<GLdouhle>:v;) -This method sets the value of

SetAffine::Irans to ::resize vector(2, 0.0, v).

B.3.27. message:SetAffine3D

Specializes message:SetAffine for 3D affine transformations.

Parent Message Construct: message:SetAffine

Derived Message Constructs: None

Receiving Processes: process :Node3D, process: View3D

Sending Processes: process:Node3D

Methods:

method:init(puhlic; void;) - Initializes the data members so that the aggregate affine transform is the

identity. This involves resizing all of the data members to 3 elements with values 0.0 (except

SetAffine::scale, which is initialized to <1.0, 1.0, 1.0>).

methoduset~trRotation(public; void; GLdouhle:x; GLdouble:y; GLdouhle:z;) - This method sets the

value of SetAffine::ctrRot to : :make vector(3, x, y, z).

methoduset~trRotation(public; void; std: :vector<GLdouble>:v;) - This method sets the value of

SetAffine::ctrRot to ::resize-vector(3, 0.0, v).

methoduset~trScale(public; void; GLdouble:x; GLdouble:y; GLdouhle:z;) - This method sets the value

of SetAffine::ctrScale to ::make-vector(3, x, y, z).

234

method:set~trScale(publlc; void; std::vector<GLdoube>:v;) - This method sets the value of

SetAffine::crScale to ::resize-vector(3, 0.0, v).

mnethod:setflotation(public; void; GLdouhle:x; GLdouble:y; GLdouble:z;) - This method sets the value

of SetAffine: :rot to : :make vector(3, x, y, z).

method:setRotation(public; void; std: :vector<GLdouble>:v;) - This method sets the value of

SetAffine::rot to ::resize-vector(3, 0.0, v).

method:setScale(public; void; GLdouble:x; GLdouble:y; GLdouble:z;) - This method sets the value of

SetAffine::scale to ::make vector(3, x, y, z).

method:setScale(public; void; std::vector<GLdouble>:v;) - This method sets the value of

SetAffine::scale to : :resize vector(3, 1.0, v).

method:setTranslation(puhlic; void; GLdouble:x; GLdouble:y; GLdouhle:z;) - This method sets the

value of SetAffine::rans to ::make-vector(3, x, y, z).

method:setTranslation(public; void; std: :vector<GLdouble>:v;) - T'his method sets the value of

SetAffine: :trans to ::resize-vector(3, 0.0, v).

B.3.28. message: SetColo r

This message is used to set the color of shapes.

Parent Message Construct: message:Set Vector

Derived Message Constructs: None

Receiving Processes: process:Shape, process: View

Sending Processes: process:Shape

Methods:

235

methoduset(publlc; void; std::vector<GLdouble>:c;) - Sets the value of the vec to ::resize-vector(4, 1.0,

C).

methoduset(public; void; GLdouhle:r; GLdouble:g; GLdouble:b; GLdouble:a;) - Sets the value of vec

to ::make-vector(4, r, g, b, a).

method:set(public; void; GLdouble:r; GLdouble:g; GLdouble:b;) - Sets the value of vec to

::make-vector(4, r, g, b, 1.0).

method:red(public; GLdouble;) - This routine returns the red color component, vec[0].

methodfgreen(puhllc; GLdouhle;) - This routine returns the green color component, vec[l].

method:blue(public; GLdouble;) - This routine returns the blue color component, vec[2].

method:alpha(public; GLdouhle;) - This routine returns the alpha color component, vec [I].

B.3.29. message: SetConeSize

This message construct is used to set the parameters of a cone.

Parent Message Construct: message:Set Value

Derived Message Constructs: None

Receiving Processes: process:Cone, process: View3D

Sending Processes: process:Cone

Data Members:

GLdouble:base - Specifies the radius of the cone base.

GLdouble:height - Specifies the cone height.

GLintuslies - Specifies the number of radial slices into which GLUT should break the cone.

236

GLint:stacks - Specifies the number of stacked into which GLUT should break the cone.

Methods:

method:set(public; void; GLdouble:b; GLdouble:h; GLint:sl; GLint:st;) - Sets base to b, height to h,

slices to si, and stacks to st.

B.3.30. message:SetCubeSize

This message construct is used to set the size of the cube.

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process:Cube, process: View3D

Sending Processes: process:Cube

Data Members:

GLdouble:size - New edge length for the cube.

Methods:

method:set(public; void; GLdouble:s;) - Sets size to s.

B.3.31. message:SetCylinderSize

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process:Cylinder, process: View3D

Sending Processes: process:Cylinder

237

Data Members:

GLdouble:radius - Value for the radius of the cylinder.

GLdouble:length - Value for the length of the cylinder.

GLint:sides - Number of sides per ring.

GLint:rings - Number of radial slices

Methods:

method:set(public; void; GLdouble:i; GLdouble:o; GLint:s; GLint:r;) - Sets inner to i, outer to o,

sides to s, and rings to r.

B.3.32. message:SetDefaultActive

This message is used to set the default value of the active flags within a process:Object instance. It does

not change any of the existing flag values for gvm::Object instance in any views in which the

process:Object is already registered. Instead, any future registrations will create the gvm::Object with the

default activation flag having been set to the new value specified herein.

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process:Object, process: View

Sending Processes: process:Object

Data Members:

bool:active(true) - Used to set the default active flag in the receiving process:Object instance.

Methods:

238

method:set(public; void; bool:a;) - Sets active to a.

B.3.33. message:SetLabel

Each gvm::Object can have a label to assist in debugging. This label can be set through the corresponding

process:Object instance in the simulation by first sending a message to that process:Object and then by

forwarding new message:SetLabel instances to the views where the process:Object is registered.

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process:Object, process: View

Sending Processes: process:Object

Data Members:

std::string:label - The value of the new label for the object.

Methods:

method:set(publc; void; std::string:c;) - Set label to c.

method:get(public; std::string;) - Return label to the calling routine.

B.3.34. message:SetMode

Message to set the rendering mode for shapes. The mode can take on any of the OpenGL rendering modes,

listed below. One note on this is that the pre-defined 3D shapes (process:Cube, process:Cone, etc) use

GLUT to actually perform the rendering. GLUT only allows solid and wire frame rendering modes for

these shapes.

Parent Message Construct: message:SetValue

Derived Message Constructs: None

239

Receiving Processes: process:Shape, process: View2D, process:View3D

Sending Processes: process:Shape

Data Members:

GLenum:grmode - Takes on one of the following values GL_POINTS, GLLINES,

GLLINESTRIP, GLLINELOOP, GLTRIANGLES, GLTRIANGLESTRIP,

GLTRIANGLEFAN, GLQUADS, GLQUADSTRIP, GLPOLYGON. The meaning of these

values can be found in (Wright 1996) page 172.

Methods:

method:set(public; void; GLenum:m;) - Sets mode to m.

B.3.35. message:SetPointSize

This message is sent to a view to set the point size parameter for rendering single vertices in the receiving

view. It will cause the process: View instance to set the size parameter to the size portion of the payload of

the message. When a screen is rendered, the process:View instance will call ::glPointSize(size) prior to

rendering the scene.

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process: View

Sending Processes: None

Data Members:

GLfloat:size(1.O) - Size parameter for single vertices in the receiving view to be rendered.

Methods:

240

method: set(public; void; GLfloat:s;) - Sets size to s.

B.3.36. message:SetPosition

Sets location of the GLUT window.

Parent Message Construct: None

Derived Message Constructs: None

Receiving Processes: process: View

Sending Processes: None

Data Members:

int:x - X coordinate of the window left side.

int:y - Y coordinate of the window top side.

Methods:

method:set(public; void; int:X; int: Y;) - Sets x to X andy to Y.

B.3.37. message:SetRefresh

Used to set the simulation time between view refreshes.

Parent Message Construct: None

Derived Message Constructs: None

Receiving Processes: process: View

Sending Processes: None

Data Members:

241

double:refreshInterval - Simulation time delta between view refreshes.

Methods:

method:set(public; void; double:r;) - Sets refreshInterval to r.

B.3.38. message:SetRotation2D

This message is used to set the rotation angle (about the Z axis) for a process:Node2D instance.

Parent Message Construct: message:SetVector2D

Derived Message Constructs: None

Receiving Processes: process:Node2D, process: View2D

Sending Processes: process:Node2D

B.3.39. message:SetRotation3D

This message is used to set the rotation angles for a process:Node3D instance.

Parent Message Construct: message: Vector3D

Derived Message Constructs: None

Receiving Processes: process:Node3D, process: View3D

Sending Processes: process:Node3D

B.3.40. message:SetRotationCenter2D

This message is used to set the center of rotation for a process:Node2D instance.

Parent Message Construct: message:SetVector2D

Derived Message Constructs: None

242

Receiving Processes: process:Node2D, process: View2D

Sending Processes: process:Node2D

B.3.41. message:SetRotationCenter3D

This message is used to set the center of rotation for a process:Node3D instance.

Parent Message Construct: message:SetVector3D

Derived Message Constructs: None

Receiving Processes: process:Node3D, process:View3D

Sending Processes: process:Node3D

B.3.42. message:SetScale2D

This message is used to set the scaling factor for a process:Node2D instance.

Parent Message Construct: message:SetVector2D

Derived Message Constructs: None

Receiving Processes: process:Node2D, process:View2D

Sending Processes: process:Node2D

B.3.43. message:SetScale3D

This message is used to set the scaling factor for a process:Node3D instance.

Parent Message Construct: message:SetVector3D

Derived Message Constructs: None

Receiving Processes: process:Node3D, process: View3D

243

Sending Processes: process:Node3D

B.3.44. message:SetScaleCenter2 D

This message is used to set the scaling center for a process:Node2D instance.

Parent Message Construct: message:SetVector2D

Derived Message Constructs: None

Receiving Processes: process:Node2D, process: View2D

Sending Processes: process:Node2D

B.3.45. message:SetScaleCenter3D

This message is used to set the scaling center for a process:Node3D instance.

Parent Message Construct: message:SetVector3D

Derived Message Constructs: None

Receiving Processes: process:Node3D, process: View3D

Sending Processes: process:Node3D

B.3.46. message:SetSize

This message requests a change in the size of the GLUT view port window.

Parent Message Construct: None

Derived Message Constructs: None

Receiving Processes: process: View

Sending Processes: None

244

Data Members:

int:width - New width of the view port window.

int:height - New height of the view port window.

Methods:

method:set(public; void; int:w; int:h;) - Sets width to w and height to h.

B.3.47. message: SetSphereSize

Parent Message Construct: message:SetValue

Derived Message Constructs: None

Receiving Processes: process:Sphere, process: View3D

Sending Processes: process:Sphere

Data Members:

GLdouble:radius - Radius of the sphere.

GLint:slices - Number of radial slices in the sphere.

GLint:stacks - Number of lateral stacks in the sphere.

Methods:

method:set(public; void; GLdouhle:r; GLint:sl; GLint:st;) - Sets radius to r, slices to sI, and stacks to

St.

B.3.48. message: SetTorusSize

Parent Message Construct: message:Set Value

245

Derived Message Constructs: None

Receiving Processes: process: Torus, process: View3D

Sending Processes: process:Torus

Data Members:

GLdouble:inner - Value for the inner radius of the torus.

GLdouble:outer - Value for the outer radius of the torus.

GLint:sides - Number of sides per ring.

GLint:rings - Number of radial slices

Methods:

method:set(public; void; GLdouble:i; GLdouble:o; GLint:s; GLint:r;) - Sets inner to i, outer to o,

sides to s, and rings to r.

B.3.49. message:SetTranslation2D

This message is used to set the translation for a process:Node2D instance.

Parent Message Construct: message:SetVector2D

Derived Message Constructs: None

Receiving Processes: process:Node2D, process: View2D

Sending Processes: process:Node2D

B.3.50. message:Set'ranslation3D

This message is used to set the translation for a process:Node3D instance.

246

Parent Message Construct:
message:SetVector3D

Derived Message Constructs: None

Receiving Processes: process:Node3D, process: View3D

Sending Processes: process:Node3D

B.3.51. message: SetValue

Parent Message Construct: None

Derived Message Constructs: message.AddView, message:SetAffine, message:SetConeSize,

message:SetCubeSize, message:SetDefaultActive, message:SetMode, message:SetSphereSize,

message:SetforusSize, message:Set Vector

Receiving Processes: None

Sending Processes: None

Data Members:

gvm::object index:index((ulong) (-1))-Index of sending graphics object. Used only when the

destination is a View process.

B.3.52. message: Set~ector

Base class for messages sending std::vector<::GLdouhle> instances between processes.

Parent Message Construct: message:Set Value

Derived Message Constructs: message:SetColor, message:SetVector2D, message:SetVector3D

Receiving Processes: None

Sending Processes: None

247

Data Members:

::GLdouble:vec[] - Vector to send to the destinations.

Methods:

method.-get(public; std::vector<::GLdouble>;) - Return vec to the calling routine.

methodfget(publlc; ::GLdouble; ulong:i;) - Return the ith component of vec to the calling routine.

B.3.53. message: Se~ector2 D

Base class for messages sending two dimensional std::vector<::GLdouhle> instances between processes.

Parent Message Construct: message:Set Vector

Derived Message Constructs: message:SetRotation2D, message:SetRotationCenter2D,

message:SetScale2D, message:SetScaleCenter2D, niessage:Setfranslation2D

Receiving Processes: None

Sending Processes: None

Methods:

method:init(puhlic; void;) - Initializes the Set Vector::vec to <0.0, 0.0> or, if this is instantiated as a

message:SetScale2D, it is initialized to <1.0, 1.0>.

method:set(puhlic; void; ::GLdouble:x; ::GLdouble:y;) - Sets the value of Set Vector::vec to

::make-vector(2, x, y).

method:set(puhlic; void; std::vector<::GLdoube>:v;) - Set the value of Set Vector::vec to

::resize_vector(2, 0.0, v) or, if the message is instantiated as a message:SetScale2D, it is set to

::resizevyector(2, 1.0, v).

248

B.3.54. message: SetVector3 D
Base class for messages sending three dimensional std::vector<::GLdouhle> instances between processes.

Parent Message Construct: message:Set Vector

Derived Message Constructs: mnessage:Setflotation3D, mnessage:SetRotationCenter3D,

message:SetScale3D, mnessage :SetScaleCenter3D, mnessage:Setfranslation3D

Receiving Processes: None

Sending Processes: None

Methods:

mnethoddinit(publlc; void;) - Initializes the Set Vector::vec to <0.0, 0.0, 0.0> or, if this is instantiated as a

message:SetScale3D, it is initialized to< <1.0, 1.0, 1.0>.

method:set(public; void; ::GLdouble:x; ::GLdouhle:y; ::GLdouble:z;) - Set the value of

Set Vector: :vec to ::make-vector(3, x, y, z).

mnethod:set(publlc; void; std: :vector<: :GLdouble>:v;) - Set the value of SetVector: :vec to

::resize-vector(3, 0.0, v) or, if the message is instantiated as a message:SetScale3D, it is set to

::resize-vector(3, 1.0, v).

B.3.55. message:SetVertex2D

A message to set the location of a process: Vertex2D instance.

Parent Message Construct: mnessage:SetVector2D

Derived Message Constructs: None

Receiving Processes: process: Vertex2D, process: View2D

Sending Processes: process: Vertex2D

249

B.3.56. message:SetVertex3D

A message to set the location of a process: Vertex3D instance.

Parent Message Construct: message:SetVector3D

Derived Message Constructs: None

Receiving Processes: process: Vertex3D, process: View3D

Sending Processes: process: Vertex3D

B.3.57. process:Cone

This process construct allows a cone to be viewed within multiple process:View3D instances. It references

a gvm::Cone instance owned by each gvm:: View3D instance with which the process:Cone is registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

Data Members:

double:base(O.0) - Size of the cone base.

double:height(O.O) - Size of the cone base.

int:slices(O) - Number of slices into which the cone is segmented.

int:stacks(O) - Number of stacks composing the cone.

Methods:

method:set(public; void; double:b; double:h; int:sl; int:st;) - Sets base to b, height to h, slices to sl, and

stacks to st.

mode:Default Nodes:

250

node:addView[AddView:in][SetConeSize:out]- Upon receiving a request to add view handle, this node

will report to the new view the current size parameters of the cone.

node:setSize[SetConeSize:in][SetConeSize:out[]]- Upon receiving a change in any of the size parameters

for the cone, this node will Sets base to in.base, height to in.height, slices to in.slices, and stacks to

in.stacks and then report these changes to the views in which this cone has been registered. This will allow

the associated gvm::Cone instance in those views to be properly updated.

B.3.58. process:Cube

This process construct allows a cube to be viewed within multiple process:View3D instances. It references

a gvm::Cube instance owned by each process:View3D process in which this cube instance has registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

Data Members:

double:size(O.O) - Length of the cube edges

mode:Default Nodes:

node:addView[AddView:in][SetCubeSize:out] - Upon receiving a request to add a view handle, this node

will report to that view the current size parameter of the cube.

node:setSize[SetCubeSize:in][SetCubeSize:out[l]]- Upon receiving a change in any of the size parameter

for the cube, this node set size to in.size and report to the parent views in which it is registered, those

changes. This will allow the associated gvm::Cube instance in those views to be properly updated.

251

B.3.59. process:Cylinder

This process construct allows a cylinder to be viewed within multiple process:View3D instances. It

references a gvm::Cylinder instance owned by each process:View3D process in which this process is

registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

Data Members:

double:radius(O.O) - Radius of the cylinder.

double:length(O.O) - Length of the cylinder.

int:sides(O) - Number of sides the cylinder will have.

int:rings(O) - Number of rings the cylinder will have.

Methods:

method:set(public; void; double:rad; double:l; int:s; int:r;) - Sets radius to rad, length to 1, sides to s,

rings to r.

mode:Default Nodes:

node:addView[AddView:in][SetCylinderSize:out] - Upon receiving a request to add a view handle, this

node will report to that view the current size parameters of the cylinder.

node:setSize[SetCylinderSize:in][SetCylinderSize:out[]] - Upon receiving a change in any of the

parameters for the cylinder, this node will report to the process:View instances where this cylinder is

registered to update the associated gvm::Cylinder instances.

252

B.3.60. process:Dodecahedron

This process construct allows a dodecahedron to be viewed within multiple process: View3D instances. It

references a gvm::Dodecahedron instance owned by each process: View3D process in which this process is

registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

B.3.61. process:lcosahedron

This process construct allows a dodecahedron to be viewed within multiple process:View3D instances. It

references a gvm::Icosahedron instance owned by each process:View3D process in which this process is

registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

B.3.62. process:Node

Nodes server the purpose of retaining a list of subordinate process:Node and process:Shape instances and

the affine transformation information for both. They have an associate gvm::Node instance directly

managed in the view processes in which this node is registered.

Parent Process Construct: process:Object

Derived Process Constructs: process:Node2D, process:Node3D

Member Data:

GLdouble:color[4](-1.0) - Default color for all subordinate processes. The default value (-1.0) indicates

to the associate gvm::Node instances that they are to derive their color from parent gvm::Node instances.

process:nodeList[] - List of subordinate process:Node instances.

253

GLfloat-.ptSize(- 1.0) - Default point size for all subordinate processes. The default value (-1.0) indicates

to the associate gym: :Node instances that they are to derive their point size from parent gym: :Node

instances.

process:shapeList[] - List of subordinate process:Shape instances.

Methods:

method:set-color(public; void; GLdouhle:red; GLdouble:green; GLdouble:blue; GLdouble:alpha;) -

Set color to <red, green, blue, alpha>

method:set-color(puhlic; void; std::vector<GLdouble>:c;) - Set color to c.

method:setj-ioint-size(public; void; GLfloat:ps;) - Set ptSize to ps.

mode:Default nodes:

node:add View [Add View:in] [SetColor:sc, SetPointSize:sps] - Upon notification of the addition of this

process:Node instance to a gvm:: View associated with a process: View, this node will set the default color

and point size settings for the associate gym: :Node.

node:setColor[SetColor:in][SetColor:out[]]- Upon a color change request, all of the process:View

instances with gvm::Node instances associated with this process:Node are notified of the change.

node:setPointSizeFSetPointSize:in][SetPointSize:out[]- Upon a point size change request, all of the

process: View instances with gym: :Node instances associated with this process:Node are notified of the

change.

B.3.63. process:Node2D

This process construct further specializes process:Node to govern two-dimensional graphics objects.

Parent Process Construct: process:Node

Derived Process Constructs: None

254

Data Members:

double:ctrRot[2](O.O) - Center of rotation.

double:ctrScale[2](0.0) - Center for the scaling.

double:rot[2](O.O) - Rotation angles.

double:scale[2](1.0) - Scaling factors.

double:trans[2](O.O) - Translation factors.

mode:Default Nodes:

node:addNode[AddNode2D:in][RegisterNode2D:out[]] - This will add subnodes to this process:Node2D.

The new subnodes will then need to be registered with all process:View2D instances with which this

process:Node2D is registered. Sending a message:RegisterNode2D message to those process:View2D

instances does this.

node:addShape[AddShape2D:in][RegisterShape2D:out[]] - This will add subnodes to this

process:Shape2D. The new shapes will then need to be registered with the process:View2D instances

with which this process:Node2D is registered. Sending a message:RegisterShape2D message to those

process:View2D instances does this.

node:addView[AddView:in][RegisterNode2D:rn, RegisterShape2D:rs, SetAffine2D:sa] - Upon receipt of

a message:AddView instance, this process:Node2D needs to register all of its subnodes and shapes with

that view. The message:RegisterNode2D and message:RegisterShape2D messages do that. In addition,

this process:Node2D instance needs to inform the process: View2D as to the affine transform parameters.

node:setAffine[SetAffine2D:in][SetAffine2D:out[]] - This node sets the affine transform parameters of

this process:Node2D instance. That change is then passed to the process:View2D instances in which this

process:Node2D is registered in order to update the associate gvm::Node2D affine transform parameters.

255

node:setCtrRot[SetRotationCenter2D:in][SetRotationCenter2D:out[]] - This message sets the rotation

center of this process:Node2D instance. That change is then passed to the process:View2D instances in

which this process:Node2D is registered to update the associate gvm::Node2D rotation center.

node:setCtrScale[SetScaleCenter2D:in][SetScaleCenter2D:out[]] - This message sets the scaling center

of this process:Node2D instance. That change is then passed to the process:View2D instances in which

this process:Node2D is registered to update the associate gvm::Node2D scaling center.

node:setRotation[SetRotation2D:in][SetRotation2D:out[]] - This message sets the rotation angle (in

radians) of this process:Node2D instance. That change is then passed to the process:View2D instances in

which this process:Node2D is registered to update the associate gvm::Node2D rotation value.

node:setScale[SetScale2D:in][SetScale2D:out[]] - This message sets the scale of this process:Node2D

instance. That change is then passed to the process:View2D instances where this process:Node2D is

registered so that the associated gvm::Node2D instances may have their scaling factors updated.

node:setTranslation[SetTranslation2D:in][SetTranslation2D:out[]] - This message sets the translation

factor of this process:Node2D instance. That change is then passed to the process:View2D instances in

which this process:Node2D is registered to update the associate gvm::Node2D translation factors.

B.3.64. process:Node3D

This process construct further specializes process:Node to govern two-dimensional graphics objects.

Parent Process Construct: process:Node

Derived Process Constructs: None

Data Members:

double:ctrRot[3](O.O) - Center of rotation.

double:ctrScale[3](O.O) - Center for the scaling.

256

double:rot[3](O.O) - Rotation angles.

double:scale[3](1.0) - Scaling factors.

doubleltrans[j3](0.0) - Translation factors.

mode:Default Nodes:

node:addNode[AddNode3D:in][RegisterNode3D:out[]] - This will add subnodes to this process:Node3D.

The new subnodes will then need to be registered with all process: View3D instances with which this

process:Node3D is registered. Sending a message:RegisterNode3D message to those process:View3D

instances does this.

node:addShape[AddShape3D: in] [RegisterShape3D: out[]] - This will add subnodes to this

process:Shape3D. The new shapes will then need to be registered with the process: View3D instances

with which this process:Node3D is registered. Sending a message: RegisterShape3D message to those

process:View3D instances does this.

node:addView[AddView:in][RegisterNode3D:rn, RegisterShape3DArs, SetAffine3DAsa] - Upon receipt of

a message:Add View instance, this process:Node3D needs to register all of its subnodes and shapes with

that view. The message:RegisterNodeD and message:RegisterShape3D messages do that. In addition,

this process:Node3D instance needs to inform the process: View3D as to the affine transform parameters.

node:setAffine[SetAffine3D:in][SetAffine3D:out[II - This message sets the affine transform parameters of

this process:Node3D instance. That change is then passed to the process: View3D instances in which this

process:Node3D is registered in order to update the associate gvm::Node3D affine transform parameters.

node:setCtrRot[SetRotationCenter3D: in] [SetRotationCenter3D: out[]] - This message sets the rotation

center of this process:Node3D instance. That change is then passed to the process: View3D instances in

which this process:Node3D is registered to update the associate gvm::Node3D rotation center.

257

node:setCtrScale[SetScaleCenter3D:in][SetScaleCenter3D:out[]] - This message sets the scaling center

of this process:Node3D instance. That change is then passed to the process:View3D instances in which

this process:Node3D is registered to update the associate gvm::Node3D scaling center.

node:setRotation[SetRotation3D:in][SetRotation3D:out[]] - This message sets the rotation angle (in

radians) of this process:Node3D instance. That change is then passed to the process:View3D instances in

which this process:Node3D is registered to update the associate gvm::Node3D rotation value.

node:setScale[SetScale3D:in][SetScale3D:out[]] - This message sets the scale of this process:Node3D

instance. That change is then passed to the process:View3D instances where this process:Node3D is

registered so that the associated gvm::Node3D instances may have their scaling factors updated.

node:setTranslation[SetTranslation3D:in][SetTranslation3D:out[]] - This message sets the translation

factor of this process:Node3D instance. That change is then passed to the process:View3D instances in

which this process:Node3D is registered to update the associate gvm::Node3D translation factors.

B.3.65. process:Object

This process acts as a base class for various GUI process. Each GUI process can be registered in a variety

of process:View instances. Each process:View provides the process:Object instance with an index value

that messages to each of those views uses to access the associated gvm::Object instance. Additionally,

each process:Object instance can turn itself on and off in each of the views. There is a framework

allowing all gvm::Object instances associated with this process:Object instance to be independently

activated.

Parent Process Construct: None

Derived Process Constructs: process:Node, process:Shape, process:Vertex

Data Members:

bool:defActive(true) - Default active value.

258

std::map<process, gvm::object index>:indexMap - Map of object/view indices associations.

mode:Default Nodes:

node:addView[AddView:in][SetActive:out, SetLabel:sl] - When a new process:View is added, add that

view and its associated index to indexMap by setting indexMap[in.view] to in.index. The process:View

instance is also informed as to the default active status and the process label.

node:selectiveActivate[SelectiveActivate:in][SetActive:out[l] - Here, we can selectively activate or

deactivate the associated gvm::Object instances according to the associate made in in.activeMap. Those

affected process:View instances are notified of the change with the outbound message:SetActive.

node:setActive[SetActive:in][SetActive:out[l] - This sends message:SetActive instances to all views in

indexMap reflecting the change in the active status. The result is that all active flags in the associated

gvm::Object instances in all views in which this object is registered are set to in.active (i.e. they can all be

turned on or off with this one inbound message).

node:setDefaultActive[SetDefaultActive:in][] - This sets the defActive flag to the inactive flag. It only

sets the active flag, and does not change the view/activity state associations.

node:setLabel[SetLabel:in][SetLabel:out[]] - This sets the defActive flag to the inactive flag. It only sets

the active flag, and does not change the view/activity state associations.

B.3.66. process:Octahedron

This process construct allows a octahedron to be viewed within multiple process:View3D instances. It

references a gvm::Octahedron instance owned by each process:View3D process in which this process is

registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

259

B.3.67. process:Polygon2D

This process construct is for general two-dimensional polygons. The rendering mode for this polygon and

the location of the polygon vertices must be consistent with the restrictions provided within OpenGL. The

most prominent of these restrictions is that if the mode value is GLPOLYGON, then vertices must form a

convex polygon.

Parent Process Construct: process:Shape2D

Derived Process Constructs: None

Data Members:

process:vertexList[] - List of vertices for this polygon. They will be rendered in the order added to the list.

Methods:

mode:Default Nodes:

node:addVertex[AddVertex2D:in][RegisterVertex2D:out[]] - When new vertices are added, these

additions need to be registered with the process:View2D instance that manages the associate

gvm::Polygon2D instances.

node:addView[AddView:in][RegisterVertex2D:rv] - Upon receipt of the message:AddView, this

process:Polygon2D will register the vertices comprising it with the view that sent the message'AddView.

B.3.68. process:Polygon3D

This process construct is for general three-dimensional polygons. The rendering mode for this polygon and

the location of the polygon vertices must be consistent with the restrictions provided within OpenGL. The

most prominent of these restrictions is that if the mode value is GLPOLYGON, then vertices must form a

convex polygon.

Parent Process Construct: process:Shape3D

260

Derived Process Constructs: None

Data Members:

process:vertexList[] - List of vertices for this polygon. They will be rendered in the order added to the list.

Methods:

mode:Default Nodes:

node:addVertex[AddVertex3D:in][RegisterVertex3D:out[]] - When new vertices are added, these

additions need to be registered with the process:View3D instances that manage the associate

gvm::Polygon3D instances.

node:addView[AddView:in][RegisterVertex3D:rv] - Upon receipt of the message:AddView, this

process:Polygon3D will register the vertices comprising it with the view that sent the message:AddView.

B.3.69, process:Shape

This is the parent construct for all of the shapes. Shapes have applied to them affine transforms to position

them somewhere in the scene. This is then viewed from a certain position.

Parent Process Construct: process:Object

Derived Process Constructs: process:Shape2D, process:Shape3D

Data Members:

GLdouble:color[4](-1.0) - This is the color associated with this shape instance. The default value (-1.0)

indicates to the associate gvm::Shape instances that they are to derive their color from parent gvm::Node

instances.

GLenum:grmode - Rendering mode for this shape. It takes on one of the following values

GLPOINTS, GLLINES, GLLINESTRIP, GLLINELOOP, GLTRIANGLES,

261

GLTRIANGLESTRIP, GLTRIANGLEFAN, GL-QUADS, GLQUADSTRIP,

GLPOLYGON. The meaning of these values can be found in (Wright 1996) page 172.

GLfloat:ptSize(-1.0) - Point size attribute of this shape. The default value (-1.0) indicates to the associate

gvm::Shape instances that they are to derive their point size attribute from parent gvm::Node instances.

Methods:

method:set-color(public; void; GLdouble:r; GLdouble:g; GLdouble:b; GLdouble:a;) - Sets color to

::make vector(4, r, g, b, a).

method:setcolor(public; void; std::vector<GLdouble>:c;) - Sets color to ::resizevector(4, 1.0, c).

method:setmode(public; void; GLenum:m;) - Sets grjmode to m.

method:set-point-size(public; void; GLfloat:ps;) - Sets pLsize to ps.

mode:Default Nodes:

node:addView[AddView:in][SetColor:sc, SetMode:sm, SetPointSize:sps] - Upon message:AddView, this

process will inform the new process:View instance of the shape's color, rendering mode, and point size.

node:setColor[SetColor:in][SetColor:out[]] - When modifying the color of the shape, the change is passed

to the process:View instances where this shape is registered so that the associate gvm::Shape instances can

have their color parameters similarly altered.

node:setMode[SetMode:in][SetMode:out[]] - When modifying the rendering mode of the shape, the

change is passed to the process:View instances where this shape is registered so that the associate

gvm::Shape instances can have their rendering mode parameters similarly altered.

node:setPointSize[SetPointSize:in][SetPointSize:out[]] - When modifying the point size of the shape, the

change is passed to the process:View instances where this shape is registered so that the associate

gvm::Shape instances can have their point size parameters similarly altered.

262

B.3.70. process:Shape2D

This further specializes the process:Shape construct to allow two dimensional shapes within a

process: View2D instance.

Parent Process Construct: process:Shape

Derived Process Constructs: process:Polygon2D

B.3.71. process:Shape3D

This further specializes the process:Shape construct to allow three dimensional shapes within a

process: View3D instance.

Parent Process Construct: process:Shape

Derived Process Constructs: process:Cone, process:Cube, process:Cylinder, process:Dodecahedron,

process:Icosahedron, process:Octahedron, process:Sphere, process: Tetrahedron

B.3.72. process:Sphere

This process construct allows a sphere to be viewed within multiple process:View3D instances. It

references a gvm::Sphere instance owned by each process:View3D process in which this process is

registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

Data Members:

double:radius(O.O) - Sphere radius.

int:slices(O) - Number of slices through the sphere.

int:stacks(O) - Number of stacks in the sphere.

263

Methods:

method:set(public; void; double:r; int:sl; int:st;) - Sets radius to r, slices to sl, and stacks to st.

mode:Default Nodes:

node:addView[AddView:in][SetSphereSize:out] - Upon receiving a request to add a new process:View

handle, this node will report to that view the current size parameters of the sphere.

node:setSize[SetSphereSize:in][SetSphereSize:out[]] - Upon receiving a change in any of the parameters

for the sphere, this node will report to the process:View instances where this process:Sphere is registered

to update the associated gvm::Sphere instances.

B.3.73. process:Tetrahedron

This process construct allows a tetrahedron to be viewed within multiple process:View3D instances. It

references a gvm::Tetrahedron instance owned by each process:View3D process in which this process is

registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

B.3.74. process:Torus

This process construct allows a torus to be viewed within multiple process: View3D instances. It references

agvm::Torus instance owned by each process: View3D process in which this process is registered.

Parent Process Construct: process:Shape3D

Derived Process Constructs: None

Data Members:

double:inner(O.O) - Size of the inner radius.

264

double:outer(O.O) - Size of the outer radius.

int:sides(O) - Number of sides the torus will have.

int:rings(O) - Number of rings the torus will have.

Methods:

method:set(public; void; double:i; double:o; int:s; int:r;) - Sets inner to i, outer to o, sides to s, rings to

r.

mode:Default Nodes:

node:addView[AddView:in][SetTorusSize:out] - Upon receiving a request to add a view handle, this node

will report to that view the current size parameters of the torus.

node:setSize[SetTorusSize:in][SetTorusSize:out[]] - Upon receiving a change in any of the parameters for

the torus, this node will report to the process:View instances where this torus is registered to update the

associated gvm::Torus instances.

B.3.75. process:Vertex

Parent Process Construct: process:Object

Derived Process Constructs: process: Vertex2D, process: Vertex3D

B.3.76. process:Vertex2D

This is a two-dimensional vertex. It is normally subordinated to a process:Polygon2D. It is associated

with a gvm::Vertex2D which is manages in the parent process: View2D.

Parent Process Construct: process: Vertex

Derived Process Constructs: None

double:vert[2](0.0) - Vertex location, initialized to <0.0, 0.0>

265

mode:Default Nodes:

node:addView[AddView:in] [SetVertex2D:out] - reports to the process:Views where this vertex is

registered to update the associated gvm:: Vertex2D instances.

node:setVertex[SetVertex2D:in][SetVertex2D:out[l] - Sets the vertex location, and reports that new

location to the process:View2D instances where this vertex is registered so that the associated

gvm::Vertex2D can properly represent the current state of this vertex.

B.3.77. process:Vertex3D

This is a three-dimensional vertex. It is subordinated to a process:Polygon3D. It is associated with a

gvm::Vertex3D which is manages in the parent process: View3D.

Parent Process Construct: process:Vertex

Derived Process Constructs: None

Data Members:

double:vert[3](0.0) - Vertex location, initialized to <0.0, 0.0, 0.0>

Methods:

mode:Default Nodes:

node:addView[AddView:in][SetVertex3D:out] - reports to the process:Views instances where this vertex

is registered to update the associated gvm::Vertex3D instances.

node:setVertex[SetVertex3D:in][SetVertex3D:out[]] - Sets the vertex location, and reports that new

location to the new process:View3D instances where this vertex is registered so that the associated

gvm::Vertex3D can properly represent the current state of this vertex.

266

B.3.78. process:View

A process:View construct instance manages a single GLUT window in which can be displayed information

in any form the programmer wishes.

Parent Process Construct: None

Derived Process Constructs: process:View2D, process:View3D

Data Members:

std::vector<std::vector<gvm::objectindex> >:procList - Indices associated with specific processes in the

simulation system are stored in this structure. The index for some process instance v is stored in

procList[v.getNodeO][v.getlndexO]. As new processes request management from a process:View

instance, procList is polled to determine whether the process has already been registered with the view. If

not, procList is resized if necessary and a unique identifier is placed into the appropriate place inprocList.

double:refreshlnterval(O.01) - Time between consecutive refreshes.

gvm::View*:view(NULL) - This is the actual view that renders the scene.

Methods:

method:init(public; void;) - Registers view with the local sodI::GLUTViewManager instance.

method:get(protected; gvm::objectindex; process:p;) - Returns the object index associated with the

process instance with handle p. If necessary, this routine will increase the size of the procList structure.

This is

method:set(protected; void; process:p; gvm::object-index:v;) - This method sets the object instance for

process p to v. procList is resized to accommodate the new process if necessary.

267

method:restore(public; void;) - This method is called when a rollback restores the state instance receiving

the call. In this case, it will call the (*view)xrestore(getTime() to remove any pending events in view that

have timestamps later than sodl::TimeStamp::getTimeO.

method:fossilCollect(public; void;) - This method is called when a fossil collection event occurs for the

view. In this case, it will call the (*view).fossilCollect(getTimeO) to process any pending events in view

that have timestamps with time stamp sodl::TimeStamp::getTimeO.

mode:Default Nodes:

node:refresh[RefreshDisplay:in][RefreshDisplay:out] - When message:RefreshDisplay instances are

received, the node will schedule a gvm::Refresh event with view a request to update the display for time

stamp sodl::TimeStamp::getTimeO. This event will actually be processed during the fossil collection

process. The node then sends an output message to schedule another message:RefreshDisplay event for

sodl:: TimeStamp::getTimeO+refreshlnterval.

node:setActive[SetActive:in][] - This node will schedule gvm::SetActive event to set the active parameter

of the gvm::Object instance with index in.index to in.active for time stamp sodl::TimeStamp: :getTimeO.

node:setColor[SetColor:in][] - This node will schedule a gvm::SetColor event to set the color parameter

of the gvm::Object instance with index in.index to in.color for time stamp sodl::TimeStamp::getTimeO.

node:setLabel[SetLabel:in][] - This node will schedule a gvm::SetLabel event to set the label string

parameter of the gvm::Object instance with index in.index to in.label for time stamp

sod: :TimeStamp::getTimeO.

node:setMode[SetMode:in][] - This node will schedule a gvm::SetMode event to set the rendering mode

parameter of the gvm::Object instance with index in.index to in.gr-mode for time stamp

sodl::TimeStamp: :getTimeO.

node:setPointSize[SetPointSize:in][] - If in.index references an object, then this node will schedule a

gvm::SetPointSize event in view to change the point size parameter of the referenced gvm::Object instance.

268

If the in.index does not refer to an object, then it applies to the default point size value for view. In that

case, an event for changing view's point size is scheduled in view. In both cases, the time stamp for these

scheduled events is sod::TimeStamp::getTimeO.

node:setPosition[SetPosition:in][] - This node will schedule gvm::SetPosition event with view to set the

position of the GLUT window view controls to <in.x, in.y> with time stamp sodl::TimeStamp::getTimeO.

node:setRefreshlnterval[SetRefresh:inl[] - This node will set refreshInterval to the value provided in

in.refreshlnterval.

node:setSize[SetSize:in][] - This node will schedule a gvm::SetSize event with view to set the size of the

GLUT window view controls to <in.width, in.height> with time stamp sodl::TimeStamp::getTimeO.

node:start[StartSimulation:in][RefreshDisplay:out] - This node schedules the first refresh event to occur

at time 0.0. All subsequent refresh events will occur at intervals of refreshinterval.

B.3.79. process:View2D

The process:View2D construct provides more specialized user interactions for two-dimensional data

representation.

Parent Process Construct: process:View

Derived Process Constructs: None

Methods:

method:init(public; void;) - This routine will allocate view as a gvm::View2D instance and then call

Node::initO to register that gvm::View instance with the local instance of the sodl::GLUTViewManager

instance.

method:getGVMType(protected; gvm::objecttype; sodl::ptype:t;) - This returns the gvm::objecttype

associated with processes of type t.

269

mode:Default Nodes:

node:addNode[AddNode2D:in][AddView:out[]] - Adds a collection of process:Node2D handles to this

process:View2D, each of which is directly subordinated to view. It does this by scheduling a

gvm::CreateObject to request creation of new gvm::Node2D instances in view for each node

in.subordinates not previously registered. It then schedules new gvm: AddNode events with the view for

actually subordinating all of the nodes in in.subordinates to view. These events are each time stamped for

sodl::TimeStamp::getTimeO. Any new nodes are informed as to their new index value.

node:regNode[RegisterNode2D:in][AddView:out[]] - This will register a collection of process:Node2D

instances and specify their parent process:Node2D instance (which is the source of the message in). It

does this by scheduling a gvm::CreateObject event to request creation of a new gvm::Node2D instances in

view for each node in.subordinates not previously registered. A gvm::AddNode message is then scheduled

for each of the processes listed in in.subordinates[], which are added as sub-nodes to the gvm::Node

instance with index in.index. All of these events are each time stamped for sodh:TimeStamp::getTimeO.

Any new nodes are informed as to their new index value.

node:regShape[RegisterShape2D:in][AddView:out[]] - This will register a collection of

process:Shape2D instances and specify their parent process:Node2D instance (which is the source of the

message in). It does this by scheduling a gvm::CreateObject event to request creation of a new

gvm::Shape2D instances in view for each node in.subordinates not previously registered. A

gvm::AddShape message is then scheduled for each of the processes listed in in.subordinates[, which are

added as subordinate shapes to the gvm::Node instance with index in.index. All of these events are each

time stamped for sodl::TimeStamp::getTimeO. Any new nodes are informed as to their new index value.

node:regVertex[RegisterVertex2D:in][AddView:out[]] - This will register a collection of

process: Vertex2D instances and specify their parent process:Polygon2D instance (which is the source of

the message in). It does this by scheduling a gvm::CreateObject event to request creation of a new

gvm::Vertex2D instances in view for each node in.subordinates not previously registered. A

gvm::AddVertex message is then scheduled for each of the processes listed in in.subordinates[], which are

270

added as subordinate shapes to the gvmz::Polygon2D instance with index in.index. All of these events are

each time stamped for sodl::TimneStamp::getTimeO. Any new nodes are informed as to their new index

value.

node:setAffine[SetAffine2D:in][] - This node schedules a gvm::SetAffine event with view an update for

all of the affine transformation components in the gvm::Node2D instance with index in.index. The time

stamp for this scheduled item is sodl::TimneStamp::getTimeO.

node:setRotation[SetRotation2D:in][] - This node schedules a gvm::SetRotation event with view an

update for the rotation portion of the affine transformation in the gym: :Node2D instance with index

in.index. The time stamp for this scheduled item is sodl:: TimeStamp::ge~MeO.

node:setRotationCenter[SetRotationCenter2D:in][] - This node schedules a gvm::SetRotationCenter

event with view an update for the rotational center portion of the affine transformation in the gvm::Node2D

instance with index in.index. The time stamp for this scheduled item is sodl::TimeStamp::getTimeO.

node:setScale[SetScale2D:in[J - This node schedules a gvm::SetScale event with view an update for the

scale portion of the affine transformation in the gvm: :Node2D instance with index in.index. Thbe time

stamp for this scheduled item is sodt::TimeStamp::ge~imeO.

node:setScaleCentertSetScaleCenter2D:inh] - This node schedules a gvm::SetScaleCetner event with

view an update for the scaling center portion of the affine transformation in the gvm::Node2D instance with

index in.index. The time stamp for this scheduled item is sodl::TimeStamnp::ge~meO.

node:setTranslation[SetTranslation2D:in][] - This node schedules a gvmn::SetTranslation event with view

an update for the translation portion of the affine transformation in the gym: :Node2D instance with index

in.index. The time stamp for this scheduled item is sodl::TimneStamp::getTimeO.

node:setVertex[SetVertex2D: inl[] - This node will schedule a gvm::Set Vertex event with view a change to

the gvm::Vertex2D instance with index inindex to the vertex value in.geto. The time stamp for the

scheduled event will be sodl::TimneStamp::getTimeO.

271

B.3.80. process:View3D

The process:View3D construct provides more specialized user interactions for three-dimensional data

representation.

Parent Process Construct: process: View

Derived Process Constructs: None

Methods:

method:init(public; void;) - This routine will allocate view as a gvm::View3D instance and then call

Node::initO to register that gvm::View instance with the local instance of the sodl::GLUTViewManager

instance.

method:getGVMType(protected; gvm::object_type; sodl::ptype:t;) - This returns the gvm::objecttype

associated with processes of type t.

mode:Default Nodes:

node:addNode[AddNode3D:in][AddView:out[]] - Adds a collection of process:Node3D handles to this

process:View3D, each of which is directly subordinated to view. It does this by scheduling a

gvm::CreateObject to request creation of new gvm::Node3D instances in view for each node

in.subordinates not previously registered. It then schedules new gvm::AddNode events with the view for

actually subordinating all of the nodes in in.subordinates to view. These events are each time stamped for

sodl::TimeStamp::getTimeO. Any new nodes are informed as to their new index value.

node:regNode[RegisterNode3D:in][AddView:out[]] - This will register a collection of process:Node3D

instances and specify their parent process:Node3D instance (which is the source of the message in). It

does this by scheduling a gvm::CreateObject event to request creation of a new gvm::Node3D instances in

view for each node in.subordinates not previously registered. A gvm::AddNode message is then scheduled

for each of the processes listed in in.subordinates[], which are added as sub-nodes to the gvm::Node

272

instance with index in.index. All of these events are each time stamped for sodl::TimeStamp::getTimeO.

Any new nodes are informed as to their new index value.

node:regShape[RegisterShape3D:in][AddView:out[]] - This will register a collection of

process:Shape3D instances and specify their parent process:Node3D instance (which is the source of the

message in). It does this by scheduling a gvm::CreateObject event to request creation of a new

gvm::Shape3D instances in view for each node in.subordinates not previously registered. A

gvm::AddShape message is then scheduled for each of the processes listed in in.subordinates[], which are

added as sub-nodes to the gvm::Node instance with index in.index. All of these events are each time

stamped for sodl::TimeStamp::getTimeO. Any new nodes are informed as to their new index value.

node:regVertex[RegisterVertex3D:in][AddView:out[]] - This will register a collection of

process: Vertex3D instances and specify their parent process:Polygon3D instance (which is the source of

the message in). It does this by scheduling a gvm::CreateObject event to request creation of a new

gvm::Vertex3D instances in view for each node in.subordinates not previously registered. A

gvm::AddNode message is then scheduled for each of the processes listed in in.subordinates[l, which are

added as sub-nodes to the gvm::Node instance with index in.index. All of these events are each time

stamped for sodl::TimeStamp::getTimeO. Any new nodes are informed as to their new index value.

node:setAffine[SetAffine3D:in[- This node schedules a gvm::SetAffine event with view an update for

all of the affine transformation components in the gvm::Node3D instance with index in.index. The time

stamp for this scheduled item is sodl::TimeStamp::getTiMeO.

node:setConeSize[SetConeSize:in][] - This node schedules a gvm::SetConeSize event with view an event

with time stamp sodl::TimeStamp::getTimeO to change the parameters of the gvm::Cone instance with

identifier in.index to the parameters specified in in.

node:setCubeSize[SetCubeSize:in][] - This node schedules a gvm::SetSetCubeSize event with view an

event with time stamp sodl::TimeStamp::getTimeO to change the parameters of the gvm::Cube instance

with identifier in.index to the parameters specified in in.

273

node:setCylinderSize[SetCylinderSize:in][] - This schedules a gvm::SetSetCylinderSize event with view

an event with time stamp sodI: :TimeStamp: :getTimeO to change the parameters of the gym: :Cylinder

instance with identifier in.index to the parameters specified in in.

node:setRotation[SetRotation3D:in][] - This node schedules a gvm::SetRotation event with view an

update for the rotation portion of the affine transformation in the gym: :Node3D instance with index

in.index. The time stamp for this scheduled item is sodl::TimeStamp::getTimeO.

node:setRotationCenterlSetRotationCenter3D:in][] - This node schedules a gvm::SetRotationCenter

event with view an update for the rotational center portion of the affine transformation in the gvm: :Node3D

instance with index in.index. The time stamp for this scheduled item is sodl::TimeStamp::getTiMeO.

node:setScale[SetScale3D:in[] - This node schedules a gvm::SetScale event with view an update for the

scale portion of the affine transformation in the gvm::Node3D instance with index in.index. The time

stamp for this scheduled item is sodl::TimeStamp::getTimeO.

node:setScaleCenter[SetScaleCenter3D:in[] - This node schedules a gvm::SetScaleCenter event with

view an update for the scaling center portion of the affine transformation in the gvm::Node3D instance with

index in.index. The time stamp for this scheduled item is sodl::TimeStamp::getrimeO.

node:setSphereSize[SetSphereSize:in][] - This node schedules a gvm::SetSphereSize event with view an

event with time stamp getTimeo to change the parameters of the gvm: :Sphere instance with identifier

in.index to the parameters specified in in.

node:setTorusSize[SetTorusSize:in][] - This node schedules a gvm::SetTorusSize event with view an

event with time stamp sodi: :TimeStamp: :getTime() to change the parameters of the gym: :Torus instance

with identifier in.index to the parameters specified in in.

node:setTranslationlSetTranslation3D: in]1] - This node schedules a gym: SetTranslation event with view

an update for the translation portion of the affine transformation in the gvm: :Node3D instance with index

in.index. The time stamp for this scheduled item is sodl::TimeStamp::get~meO.

274

node:setVertex[SetVertex3D:in][] - This node will schedule a gvm::SetVertex event with view a change to

the gvm::Vertex3D instance with index in.index to the vertex value in.geto. The time stamp for the

scheduled event will be sodl::TimeStamp::getTimeO.

BA. GLUT View Manager (gvm) Classes
The GLUT View Manager uses the classes below to actually display information to a GLUT window.

They are owned by a process:View instance which manages them according to the process hierarchy

(which process:Node instances are owned by each other, etc).

B.4.1. gvm::AddNode

This class is derived from the gvm::Message class and is used to schedule the addition of a subnode to a

gvm:: View or gvm::Node instance.

Parent Classes: public gvm::Message

Private Data Members:

gvm::objectjindex gvm::AddNode::nodeObj - Index of the gvm::Object that is to be added to the node list

of the destination.

Public Constructors:

gvm::AddNode::AddNode(gvm::View& v, double t, gvm::objectindex o) - This constructor is used to

add the gvm::Node instance with index o as a subnode to v. This addition will occur at time t.

gvm:.AddNode::AddNode(gvm::View& v, double t, gvm::objectindex d, gvm::objectjindex o) - This

constructor is used to add the gvm::Node instance with index o as a subnode to the gvm::Node instance

with index d. This addition will occur at time t.

Public Methods:

275

virtual void gvm::AddNode::send(void) - This method is called when the message is to actually be

delivered (when the underlying simulation engine is performing incremental fossil collection for time

gvm::Message::getTimeO. In this case, it actually establishes the parent/subordinate relation specified in

the constructor used in creating this instance.

B.4.2. gvm::AddShape

Parent Classes: public gvm::Message

Private Data Members:

gvm::objectindex gvm::AddShape::shapeObj - This is the index of the gvm::Object instance (it should

actually be a gvm::Shape instance) that is to be added as a subordinate shape to the destination.

Public Constructors:

gvm::AddShape:AddShape(gvm:: View& v, double t, gvm::objectindex d, gvm::objectindex o) - This

constructor is used to add the gvm::Shape instance with index o as a subordinate shape to the gvm::Node

instance with index d. This addition will occur at time t.

Public Methods:

virtual void gvm::AddShape::send(void) - This method is called when the message is to actually be

delivered (when the underlying simulation engine is performing incremental fossil collection for time

gvm::Message::getTimeO. In this case, it actually establishes the parent/subordinate relation specified in

the constructor used in creating this instance.

B.4.3. gvm::AddVertex

Parent Classes: public gvm::Message

Private Data Members:

276

gvm::object index gvm::AddVertex::vertObj - This is the index of the gvm::Vertex instance that will be

added as a subordinate of the destination.

Public Constructors:

gvm:A:ddVertex::AddVertex(gvm:: View& v, double t, gvm::object index d, gvm::object index o) - This

constructor is used to add the gvm::Vector instance with index o as a subordinate vertex to the

gvm::Polygon2D or gvm::Polygon3D instance with index d. This addition will occur at time t.

Public Methods:

virtual void gvm::AddVertex::send(void) - This method is called when the message is to actually be

delivered (when the underlying simulation engine is performing incremental fossil collection for time

gvm::Message::getTimeO. In this case, it actually establishes the parent/subordinate relation specified in

the constructor used in creating this instance.

B.4.4. gvm::Cone

This provides a means of displaying a cone in a GLUT window. The ::glutSolidCone(base, height, slices,

stacks) and : :glutWireCone(base, height, slices, stacks) routines are called to render the cone.

Parent Class: public gvm::Shape3D

Derived Classes: None

Protected Data Members:

GLdouble gvm::Cone::base - Radius of the cone base.

GLdouble gvm::Cone::height - Height of the cone.

GLint gvm::Cone::slices - Number of radial slices in the cone slices.

GLint gvm::Cone::stacks - Number of lateral stacks for the cone.

277

Public Constructors:

gvm::Cone::Cone(gvm::View3D& v, ulong i) - This constructor calls the parent constructor

gym: :Shape3D(v, GVMCone, i) and initializes base and height both to 1.0 and slices and stacks both to

10.

Public Methods:

virtual void gvm::Cone::display(void) - hsmethod is used to display a cone using

::glutSolidCone(base, height, slices, stacks) if mode is GLPOLYGON or is or ::gluffireCone(base,

height, slices, stacks) otherwise.

virtual bool gvm::Cone::isType(gvm::object-type t) - Returns true exactly when t=GVMCone or

gvm::Shape3D::isType(t) returns true.

virtual void gvm::Cone::set(GLdouble b, GLdouble h, GLint si, GLint st) - Sets base to b, height to h,

slices to si, and stacks to s.

virtual void gym: :Cone: :setBase(GLdouble b) - Sets base to b.

virtual void gvm::Cone::setHeight(GLdouble h) - Sets height to h.

virtual void gvm::Cone::setSlices(GLint s) - Sets slices to s.

virtual void gvm::Cone::setStacks(GLint s) - Sets stacks to s.

B.4.5. gvm::CreateObject

This class is used to schedule the creation of a new gvm::Object instance within a gvm::View instance.

The creation will occur at time gvm::Message::getTimeO.

Parent Classes: public gvm::Message

Private Data Members:

278

gvm::object type gvm::CreateObject::objType - Type of object to create

Public Constructors:

gvm::CreateObject::CreateObject(gvm:: View& v, double t, gvm::objectindex d, gvm::object-type o) -

This constructor is used for scheduling the creation of a gvm::Object instance of type o with index d at time

t.

Public Methods:

virtual void gvm::CreateObject::send(void) - This method actually allocates the gvm::Object instance

and inserts it into the owning view's list of objects.

B.4.6. gvm::Cube

This provides a means of displaying a cube in a GLUT window. The ::glutSolidCube(size) and

::glutWireCube(size) routines are called to render the cube.

Parent Class: public gvm::Shape3D

Derived Classes: None

Protected Data Members:

GLdouble gvm::Cube::size - Edge length for the cube.

Public Constructors:

gvm::Cube::Cube(gvm::View3D& v, ulong i) - This constructor calls the parent constructor

gvm::Shape3D(v, GVMCube, i) and initializes size to 1.0.

Public Methods:

virtual void gvm::Cube::display(void) - Display a cube using ::glutSolidCube(size) if mode is

GLPOLYGON or is or ::glutWireCube(size) otherwise.

279

virtual bool gvm::Cube::isType(gvm::objecttype t) - Returns true exactly when t=GVMCube or

gvm::Shape3D::isType(t) returns true.

virtual void gvm::Cube::set (GLdouble s) - Sets size to s.

B.4.7. gvm::Cylinder

The gvm::Cylinder class provides a means of displaying a cylinder in a GLUT window. Unlike the other

solids displayed here, there is no GLUT routine to display a cylinder, so the author wrote one from scratch.

It supports rendering modes GLPOINTS, GLLINES, GLLINESTRIP, and GLTRIANGLES. If the

rendering mode is set to any other mode, it is treated as GLTRIANGLES.

Parent Class: public gvm::Shape3D

Derived Classes: None

Protected Data Members:

GLdouble gvm::Cylinder::radius - Radius of the cylinder.

GLint gvm::Cylinder::nsides - Number of sides around a ring.

GLdouble gvm::Cylinder::length - Length of the cylinder.

GLint gvm::Cylinder::rings - Number of rings around the cylinder.

std::vector<std::vector<std::vector<GLdouble> > > gvm::Cylinder::vertices - Hold the vertex values so

they do not need to be computed every time. They are changed any time the cylinder parameters are

changed.

Public Constructors:

gvm::Cylinder::Cylinder(gvm::View3D& v, ulong i) - This constructor calls the parent class constructor

gvm::Shape3D(v, GVMCylinder, i) and initializes radius, length, nsides and rings to 1.0, 1.0, 10 and 10

respectively.

280

Public Methods:

virtual void gvm::Cylinder::display(void) - Display the cylinder in the currently active GLUT window by

rendering the points listed in vertices in the proper order, given the rendering mode.

virtual bool gvm::Cylinder::isType(gvm::objectjtype t) - This routine returns to the calling routine true if

t=-GVMCylinder or gvm::Shape3D::isType(t) returns true.

virtual void gvm: :Cylinder: :set(GLdouble rad, GLdouble 1, GLint n, GLint r) - Sets radius, length,

nsides and rings to rad, 1, n and r respectively.

virtual void gym: :Cylinder: :setRadius(GLdouble rad) - Sets radius to rad.

virtual void gvm::Cylinder::setNSides(GLint n) - Sets nsides to n.

virtual void gym: :Cylinder: :setLength(GLdouble 1) - Sets length to 1.

virtual void gvm::Cylinder::setRings(GLint r) - Sets rings to r.

B.4.8. gvm::Dodecahedron

This provides a means of displaying a dodecahedron in a GLUT window. The ::glutSolidDodecahedron()

and ::glutWireDodecahedronO(routines are called to render the dodecahedron.

Parent Class: public gvm::Shape3D

Derived Classes: None

Public Constructors:

gvm::Dodecahedron::Dodecahedron (gvm::View3D& v, ulong i) - This constructor calls the parent

constructor gvm::Shape3D(v, GVMDodecahedron, i).

Public Methods:

281

virtual void gvm: :Dodecahedron: :display(void) - Display a dodecahedron using

::glutSolidDodecahedron() if mode is GLPOLYGON or ::glutfireDodecahedron() otherwise.

virtual bool gvm::Dodecahedron::isType(gvm::object-ype t) - Returns true exactly when

t=GVMDodecahedron or gvm::Shape3D::is Type (t returns true.

B.4.9. gvm::cosahedron

This provides a means of displaying an icosahedron in a GLUT window. The ::glutSolidlcosahedron()

and ::glutfirelcosahedron() routines are called to render the icosahedron.

Parent Class: public gvm::Shape3D

Derived Classes: None

Public Constructors:

gym: :Icosahedron::Icosahedron (gvm:: View3D& v, ulong i) - This constructor calls the parent

constructor gvm::Shape3D(v, GVMIcosahedron, i).

Public Methods:

virtual void gym: :Icosahedron: :display(void) - Display a dodecahedron using ::glutSolidlcosahedron()

if mode is GLPOLYGON or ::glutfirelcosahedron() otherwise.

virtual bool gvm::Icosahedron::isType(gvm::object type t) - Returns true exactly when

t=GVMIcosahedron or gvm: :Shape3D ::is Type (t) returns true.

B.4.10. gvm::essage

This is the parent class for all of the messages. These messages are scheduled to occur at some time. They

are processed during the fossil collection phase of the simulation and are intended to provide a mechanism

to buffer change requests to the scene graph in the graphics system.

Parent Class: public sodl:: Trace

282

Derived Classes: gym: :AddNode, gvm: :AddShape, gym: AddVertex, gym: :CreateObject, gvm: :Refresh,

gym: :SetActive, gymn::SetColor, gym: :SetConeSize, gym: :SetCubeSize, gvm: :Set CylinderSize,

g~m: :SetLabel, gvm: :SetMode, gym: :SetPointSize, gvm: :SetPosition, gym: :SetPosition,

gym: :SetRotation, gym: :SetRotation Center, gym: :SetScale, gm;: :SetScaleCenter, gym: :SetSize,

gym: :SetSphereSize, gym: :Set TorusSize, gym: SetTranslation, gym: :Set Vertex

Private Data Members:

gvm::View& gvm::Message::view -MTis is a reference to owning view.

double gvmn::Message::time - This is the message timestamp

gym: :message ype gvm: :Message: :type - This is the message type

gvm::objectgindex gvm::Message::dest - The index of the message destination object.

ulong gvm::Message::mnsglndex - A unique identifier for each message instance associated with a

particular gvm:: View instance.

Public Constructors:

gvm::Message::Message(gvm:: View& v, double t, gvm;::mnessageye ty, gv:ject index i) - This

constructor initializes view to v, time to t, type to ty and dest to i.

Public Methods:

virtual gym: object-index gym: :Message: :getDest(void) const - This method returns dest to the calling

routine.

virtual double gym::Message::getTime(void) const - This method returns time to the calling routine

virtual gym::essage-type gvm::Message::getType(void) const - This method returns type to the calling

routine.

283

virtual gvm::View& gvm::Message::getView(void) - This method returns view to the calling routine.

virtual void gvm::Message::send(void) - Derived classes overload this method to perform the specific

functions associated with delivering the message.

virtual void gvm::Message::setlndex(ulong i) - This method sets msglndex to i.

virtual ulong gvm::Message::getlndex(void) - Return msglndex to the calling routine.

B.4.11. gvm::Node

Parent Class: public gvm::Object

Derived Classes: gvm: :Node2D, gvm: :Node3D

Protected Enumerators:

enum gvm::Node::nodefags{NFColor, NFPointSize, NFLAST} - These flags are used to index an

array of bool values associated with various flag values.

Protected Data Members:

std::vector<GLdouble> gvm::Message::color - When f/ags[NFColor] is set to true, then the current

drawing color is saved and the color specified in this data member is used instead. When the subordinate

objects are finished being rendered, the original color is restored for additional processing.

std::vector<GLdouble> gvm::Node::ctrRot - Specifies the center of rotation for this rendering node.

std::vector<GLdouble> gvm::Node::ctrScale - Specifies the center of scaling for this rendering node.

std::vector<bool> gvm::Message::flags - This array contains flags for either using the local values for

color and point size or to use the default values in place when the display method is called. When the flag

is set to true, then the local value is used for all subordinates. Otherwise, the current value in effect at the

calling of the display method is used.

284

GLfloat gvm::Message::ptsize - When flags[NFPointSize] is set to true, then the current point size

parameter is saved and the size specified in this data member is used instead. When the subordinate objects

are finished being rendered, the original point size parameter is restored for additional processing.

bool gvm::Node::running - For detecting preventing infinite loops. This gets set to true when rendering

for this node starts, and false when it's done. If it is asked to render itself while true, the request is ignored

without performing any rendering.

std::vector<GLdouble> gvm::Node::rot - Specifies the rotation angle for this rendering node.

std::vector<GLdouble> gvm::Node::scale - Specifies the scaling factors for this rendering node.

std::vector<gvm::Object*> gvm::Node::subordinateList - This acts as a list of subordinate components.

It mixes both subordinate nodes and shapes in the same list.

std::vector<GLdouble> gvm::Node::trans - Specifies the translation factors for this rendering node.

Protected Constructors:

gvm::Node::Node(gvm:: View& v, gvm::object-type t, gvm::objectindex i) - This constructor calls the

parent constructor gvm::Object(v, t, i) and initializes the other data members. Each of the affine

transformation components are initialized to arrays of size two or three, for t GVMNode2D and

GVMNode3D respectively, at the origin (except scale, which is at <1, 1> or <1,1,1> as appropriate).

Members running and pt-size are initialized to false and 1.0 respectively. Arrays color and flags are set to

<-1, -1, -1, -1> and <false, false, false> respectively.

Public Constructors:

Public Methods:

virtual void gvm::Node::addObject(gvm::object index i) - This routine adds the pointer associated with

the reference gvm::Object::getViewO[i] to subordinateList.

285

virtual void gvm::Node::display(void) - If flags[NF-Color] is true then the current drawing color is

saved and reset to color. Likewise, if flags[NFPointSize] is true, the current point size parameter is

saved and the default point size is set to pt.size. It then renders the scene from this node to all of its

subordinate objects. The previous drawing color and point size are then restored prior to returning to the

calling routine.

virtual hool gvm::Node::isType(gvm::object-type t) - Thbis method returns true when either

t=GVMNode or gvm::Object::isType(t) returns true.

virtual void gvm: :Node: :setColor(GLdouble r, GLdouhle g, GLdouble b) - Sets data member color to

::make-vector(4, r, g, b, 1.0). If r, g, and b are all in the range [0.0, 1.0] then flags[NFColor] is set to

true; false otherwise.

virtual void gvm::Node::setColor(GLdouble r, GLdouble g, GLdouhle b, GLdouble a) - Sets data

member color to ::make-vector(4, r, g, b, a). If r, g, b and a are all in the range [0.0, 1.0] then

flags[NF-Color] is set to true; false otherwise.

virtual void gvm::Node::setColor(std::vector<GLdouhle> c) - This method sets color to

::resize vector(4, 1.0, c). If all of the elements of c are in the range [0.0, 1.0], thenflags[NF Color] is set

to true; false otherwise.

virtual void gvm::Node::setPointSize(GLfloat s) - hsmethod sets ptsize to s. If s 0O.0 then

flags[NF-PointSize] is set to true; false otherwise.

virtual void gvm::Node::setRotation(const std::vector<GLdouble> & v) - Sets data member rot to

* :resize.vector(rot.sizeo, 0.0, v).

virtual void gvm::Node::setRotationCenter(const std::vector<GLdouble> & v) - Sets data member

ctrRot to :resize vector(ctrRotsizeO, 0.0, v).

virtual void gvm::Node::setScaleCenter(const std::vector<GLdouble> & v) - Sets data member ctrScale

to ::resize..yector(ctrScalesizeO, 0.0, v).

286

virtual void gvm::Node::setScale(const std::vector<GLdouble> & v) - Sets data member scale to

::resize vector(scale.sizeo, 1.0, v).

virtual void gym: :Node: :set Translation (const std: :vector<GLdouble> & v) - Sets date member trans to

::resize_vector(trans.sizeO, 1.0, v).

B.4.12. gvm::Node2D

This specializes the node to perform two-dimensional affine transformations.

Parent Class: public gym: :Node

Derived Classes: None

Public Constructors:

gvm: :Node2D ::Node2D(gvm::View2D& v, ulong i) - This constructor calls the parent constructor

gym: :Node(v, GVMNode2D, i).

Public Methods:

virtual void gvm::Node2D::addNode ~gvm::object index n) - Add an existing node, given by

gvm:::Object::getViewO[n] instance to the list of subordinate objects.

virtual void gvm::Node2D::addShape(gvm::object-index s) - Add an existing shape, given by

gvm:::Object::getViewO[n] instance to the list of subordinate objects.

virtual void gvm: :Node2D: :display(void) - Display routine for this node. It performs the node's affine

transformations and then calls the parent version gvmn::Node::display() to actually display the subordinate

objects.

virtual bool gvm::Node2D::isType(gvm::object-ype t) - Returns true exactly when t=GVMNode2D or

gvm::Node::isType(t) returns true.

287

virtual void gvm::Node2D::setRotation(GLdouble z) - Sets the data member gvm::Node::rot to

::make_vector(2, z, 0.0).

virtual void gvm::Node2D::setRotationCenter(GLdouble x, GLdouble y) - Sets the data member

gym: :Node: :ctrRot to :makevector(2, x, y).

virtual void gvm::Node2D::setScale(GLdouble x, GLdouble y) - Sets the data member

gvm::Node::scale to ::make_vector(2, x, y).

virtual void gvm::Node2D::setScaleCenter(GLdouble x, GLdouble y) - Sets the data member

gvm::Node::ctrScale to ::make-vector(2, x, y).

virtual void gym: :Node2D ::setTranslation(GLdouble x, GLdouhle y) - Sets the data member

gvm::Node::trans to ::make_vector(2, x, y).

B.4.13. gvm::Node3D

This specializes the node to perform three-dimensional affine transformations.

Parent Class: public gym: :Node

Derived Classes: None

Public Constructors:

gvm::Node3D::Node3D~gvm::View3D& v, ulong i) - This constructor calls the parent constructor

gvm::Node(v, GVMNode3D, i).

Public Methods:

virtual void gvm::Node3D::addNode (gvm::object index n) - Add an existing node, given by

gvm::Object::getViewO[nJ instance to the list of subordinate objects.

virtual void gvm::Node3D::addShape(gvm::objectgindex s) - Add an existing shape, given by

gvm::Object::getViewO[n] instance to the list of subordinate objects.

288

virtual void gym: :Node3D: :display(void) - Display routine for this node. It performs the node's affine

transformations and then calls the parent version gvm::Node::display() to actually display the subordinate

objects.

virtual bool gym: :Node3D: :isType(gvm::object-iype t) - Returns true exactly when t=GVMNode3D or

gvm::Node::isType(t) returns true.

virtual void gvm::Node3D::setRotation(GLdouble z) - Sets the data member gvm::Node::rot to

::make-vector(2, z, 0.0).

virtual void gvm::Node3D::setRotationCenter(GLdouhle x, GLdouble y, GLdouble z) - Sets the data

member gvm::Node::ctrRot to : make yector(3, x, y, Z).-

virtual void gvm::Node3D::setScale(GLdouble x, GLdouhle y, GLdouble z) - Sets the data member

gvm::Node::scale to ::make-vector(3, x, y, z).

virtual void gvm::Node3D::setScaleCenter(GLdouble x, GLdouble y, GLdouble z) - Sets the data

member gvm::Node::ctrScale to ::make-vector(3, x, y, z).

virtual void gvm::Node3D::setTranslation(GLdouble x, GLdouble y, GLdouble z) - Sets the data

member gym: :Node: :trans to :makeyvector(3, x, y, z).

B.4.14. gvm::Object

This is the base class for all of the gym:: classes displayed in gvm::View instances. It provides some basic

mechanisms for displaying information to the gvm::View instances. It contains many of the methods for

setting data members within derived classes. This allows a certain level of abstraction that is useful for

delivering buffered messages to gym: :Object instances that are not of any predefined type. If a message

does something to a gvm::Object instance that does not make any sense, the instance will allow the call, but

it will be ignored, and a warning message will be delivered to std::out.

Parent Class: public sodi:: :Trace

289

Derived Classes: gvm::Node, gvm::Shape, gvm:: Vertex

Private Data Members:

gvm::View* gvm::Object::view - Pointer to the gvm::View instance to which this gvm::Object instance is

subordinate.

gvm::objectjhandle gvm::Object::handle - This is a unique identifier associated with this specific

gvm: :Object instance.

std::string gvm::Object::label - A settable label for identification purposes.

Protected Data Members:

bool gvm::Object::active - This is set to true exactly when this gvm::Object instance is active. When set

to true, it will enable the object to be displayed; when false, the code in the display method is to be

ignored.

Public Constructors:

gvm::Object::Object(gvm::View& v, gvm::objecttype t, gvm::objectindex i) - This constructor

initializes view to v, handle to (t, i), and active and label to true and "none" respectively.

Public Methods:

virtual void gvm::Object::addNode(gvm::objectgindex) - A placeholder for some derived classes to

overload.

virtual void gvm::Object::addShape(gvm::objectindex) - A placeholder for some derived classes to

overload.

virtual void gvm::Object::addVertex(gvm::object index) - A placeholder for some derived classes to

overload.

290

virtual void gvm::Object::begin (void) - A placeholder for some derived classes to overload.

virtual void gvmz::Object::display(void) - This method should be overloaded to perform output specific to

the derived class instance.

virtual void gym: :Object: :end(void) - A placeholder for some derived classes to overload.

virtual gvm::object-handle gvmn::Object::getHandle(void) - Return handle to the calling routine.

virtual gym: :object index gym: :Object: :getlndex(void) - Return handle.second to the calling routine.

virtual std::string gvm:::Object::getLabel(void) - Return label to the calling routine.

virtual gym: :object type gym: :Object: :getType(void) - Return handle.first to the calling routine.

virtual gvm:: View& gvm::Object::getView(void) -Returns view to the calling routine.

virtual bool gymz::Object: :isActive(void) const - Return active to the calling routine.

virtual bool gvm::Object::isType(gvm::object type t) - Return true exactly when t=-GVMObject.

virtual void gvmz::Object::set(GLdouble) - A placeholder for some derived classes to overload.

virtual void gv::Object: :set(GLdouhle, GLdouble) - A placeholder for some derived classes to

overload.

virtual void gymz::Object: :set(GLdouble, GLdouble, GLdouble) - A placeholder for some derived

classes to overload.

virtual void gym:::Object: :set(GLdouble, GLdouble, GLint, GLint) - A placeholder for some derived

classes to overload.

virtual void gvym::Object::set(GLdouble, GLint, GLint) - A placeholder for some derived classes to

overload.

291

virtual void gvm::Object::set(const std::vector<GLdouble>&) - A placeholder for some derived classes

to overload.

virtual void gvm: :Object: :setActive(bool a) - Sets the active flag to a.

virtual void gvm::Object::setfiase(GLdouble) - A placeholder for some derived classes to overload.

virtual void gvm: :Object: :setColor(GLdouble, GLdouble, GLdouble) - A placeholder for some derived

classes to overload.

virtual void gym: :Object: :setColor(GLdouble, GLdouble, GLdouble, GLdouble) - A placeholder for

some derived classes to overload.

virtual void gvm::Object::setColor(std::vector<GLdouble>) - A placeholder for some derived classes to

overload.

virtual void gvm::Object::setHeight(GLdouhle) - A placeholder for some derived classes to overload.

virtual void gym: :Object: :setlnnerRadius(GLdouble) - A placeholder for some derived classes to

overload.

virtual void gym: :Object: :setLabel(std: :string s) - Set label to s.

virtual void gvm::Object::setMode(GLenum m) - A placeholder for some derived classes to overload.

virtual void gvm::Object::setNSides(GLint) - A placeholder for some derived classes to overload.

virtual void gym::Object::setOuterRadius(GLdouble) - A placeholder for some derived classes to

overload.

virtual void gvm::Object::setPointSize(GL float) - A placeholder for some derived classes to overload.

virtual void gvm::Object::setRadius(GLdouble) - A placeholder for some derived classes to overload.

virtual void gvm: :Object: :setRings(GLint) - A placeholder for some derived classes to overload.

292

virtual void gvm::Object::-setRotation(GLdouble) - A placeholder for some derived classes to overload.

virtual void gvm::Object::setRotation(GLdouble, GLdouhle, GLdouble) - A place holder for some

derived classes to overload.

virtual void gvm::Object::setRotafion(const std::vector<GLdouble>&) - A place holder for some

derived classes to overload.

virtual void gvm: :Object: :setRotationCenter(GLdouble, GLdouhle) - A placeholder for some derived

classes to overload.

virtual void gvm::Object::setRotationCenter(GLdouble, GLdouble, GLdouble) - A place holder for

some derived classes to overload.

virtual void gvm::Object::setRotationCenter(const std::vector<GLdouble>&) - A place holder for some

derived classes to overload.

virtual void gvm::Object::setScale(GLdouble, GLdouble) - A place holder for some derived classes to

overload.

virtual void gym: :Object: :setScale(GLdouble, GLdouhle, GLdouble) - A place holder for some derived

classes to overload.

virtual void gvm: :Object: :setScale(const std: :vector<GLdouble>&) - A place holder for some derived

classes to overload.

virtual void gym: :Object: :setScaleCenter(GLdouhle, GLdouble) - A place holder for some derived

classes to overload.

virtual void gvm::Object::setScaleCenter(GLdouhle, GLdouble, GLdouble) - A place holder for some

derived classes to overload.

293

virtual void gvm::Object::setScaleCenter(const std::vector<GLdouble>&) - A place holder for some

derived classes to overload.

virtual void gvm::Object::setSlices(GLint) - A place holder for some derived classes to overload.

virtual void gym: :Object: :setStacks(GLint) - A place holder for some derived classes to overload.

virtual void gvm::Object::setTranslation(GLdouble, GLdouble) - A place holder for some derived

classes to overload.

virtual void gym: :Object: :setTranslation(GLdouble, GLdouble, GLdouble) - A place holder for some

derived classes to overload.

virtual void gvm: :Object: :setTranslation(const std: :vector<GLdouble>&) - A place holder for some

derived classes to overload.

virtual void gvm::Object::setView(gvm:: View& v) - Sets view to v.

B.4.15. gvm::Octahedron

This provides a means of displaying an octahedron in a GLUT window. The ::glutSolidOctahedron() and

::glutfireOctahedron() routines are called to render the octahedron.

Parent Class: public gvm::Shape3D

Derived Classes: None

Public Constructors:

gvm::Octahedron::Octahedron(gvm::View3D& v, ulong i) - This constructor calls the parent constructor

gvm::Shape3D(v, GYMOctahedron, i).

Public Methods:

294

virtual void gvm::Octahedron::display(void) - This method displays an octahedron using

::glutSolidOctahedronO if mode=GLPOLYGON or ::glutWireOctahedronO otherwise.

virtual bool gvm::Octahedron::isType(gvm::objecttype t) - This routine returns to the calling routine

true if t=GVMOctahedron or gvm::Shape3D::isType(t) returns true.

B.4.16. gvm::Polygon2D

This class is used for displaying groups of two-dimensional vertices to the parent gvm::View2D window.

When mode is GLPOLYGON, the vertices need to form a convex polygon.

Parent Class: public gvm::Shape2D

Derived Classes: None

Protected Methods:

std::vector<gvm::Object*> gvm::Polygon2D::vertList - List of vertices to display to the parent view.

Public Constructors:

gvm::Polygon2D::Polygon2D(gvm::View2D& v, ulong i) - This constructor calls the parent constructor

gvm::Shape2D(v, GVMPolygon2D, i).

Public Methods:

virtual void gvm::Polygon2D::display(void) - Display this two-dimensional polygon to the currently

active GLUT window.

virtual void gvm::Polygon2D::addVertex(gvm::objectindex i) - This method will add

&gvm::Object::getViewO[i] to the back of vertList.

295

B.4.17. gvm::Polygon3D

This class is used for displaying groups of three-dimensional vertices to the parent gvm::View3D window.

When mode is GLPOLYGON, the vertices need to form a convex polygon.

Parent Class: public gvm::Shape3D

Derived Classes: None

Protected Methods:

std::vector<gvm::Object*> gvm::Polygon3D::vertList - List of vertices to display to the parent view.

Public Constructors:

gvm::Polygon3D::Polygon3D(gvm::View3D& v, ulong i) - This constructor calls the parent constructor

gvm::Shape3D(v, GVMPolygon3D, i).

Public Methods:

virtual void gvm::Polygon3D::display(void) - Display this two-dimensional polygon to the currently

active GLUT window.

virtual void gvm::Polygon3D::addVertex(gvm::object index i) - This method will add

&gvm::Object::getView()[ij to the back of vertList.

B.4.18. gvm::Refresh

The gvm::Refresh message is used to schedule a screen refresh. Once it has been scheduled, the refresh is

actually performed during fossil collection of the owning process: View instance.

Parent Classes: public gvm::Message

Derived Classes: None

Public Constructors:

296

gvm::Refresh::Refresh(gvm::View& v, double t) - This class constructor calls the parent constructor

gvm::Message(v, t, GVMRefresh, (ulong) -1).

Public Methods:

virtual void gvm::Message::send(void) - This method sets the refresh flag in view so that the next fossil

collection event will force a screen refresh.

B.4.19. gvm::SetActive

The gvm::SetActive message sets the active flag for the destination gvm::Object instance, turning it either

on or off within view.

Parent Classes: public gvm::Message

Derived classes: None

Private Data Members:

bool gvm::SetActive::active - This contains the value for the active flag in the destination object.

Public Constructors:

gvm::SetActive::SetActive(gvm::View& v, double t, gvm::objectindex d, bool a) - Class constructor

which calls parent constructor gvm::Message(v, t, GVMSetActive, i) and initializes active to a.

Public Methods:

virtual void gvm::SetActive::send(void) - Sets the active flag of getViewO[dest] to active.

B.4.20. gvm::SetColor

The gvm::SetColor message is intended to change the color attribute of the destination gvm::Object

instance, either a gvm::Shape or gvm::Node instance.

Parent Classes: public gvm::Message

297

Derived Classes: None

Private Data Members:

std: :vector<GLdouble> gym: :SetColor: :color - Color to set the destination object.

Public Constructors:

gvmn::SetColor::SetColor(gvm:: View& v, double t, gvm::object-index i, std::vector<GLdouble> c)-

This constructor initializes color to c and calls the parent constructor gmn: :Message(v, t, GVM-SetColor,

0).

Public Methods:

virtual void gvm::SetColor::send(void) - This method sets the color attribute of the destination object to

color.

B.4.21. gvm::SetConeSize

The gvm::SetConeSize message is intended to change the cone size attributes of the destination gvm::Cone

instance.

Parent Classes: public gvm: :Message

Derived Classes: None

Private Data Members:

GLdouble gvm::SetConeSize::base - Size to set the base attribute of the destination gvm::Cone instance.

GLdouble gvm::SetConeSize::height - Size to set the height attribute of the destination gvm::Cone

instance.

GLint g~m: :SetConeSize: :slices - Number of radial slices composing the destination gym:: Cone instance.

298

GLint gvm::SetConeSize::stacks - Number of lateral slices composing the destination gvm::Cone

instance.

Public Constructors:

gvm::SetConeSize::SetConeSize(gvm:: View& v, double t, gvm::objectjindex i, GLdouble b, GLdouble

h, GLint sl, GLint st) - This constructor calls the parent constructor gvm::Message(v, t,

GVMSetConeSize, i) and initializes base to b, height to h, slices to sl and stacks to st.

Public Methods:

virtual void gvm::SetConeSize::send(void) - This method will update the parameters of the destination

gvm::Cone instance to the parameters in the payload of this message.

B.4.22. gvm::SetCubeSize

The gvm::SetCubeSize message is sent to gvm::Cube instances to change the size of the cube edges.

Parent Classes: public sodl::Message

Derived Classes: None

Private Data Members:

GLdouble gvm::SetCubeSize::cube-size - New size attribute for the destination gvm::Cube instance.

Public Constructors:

gvm::SetCubeSize::SetCubeSize(gvm::View& v, double t, gvm::objectjindex i, GLdouble s) - This

constructor initializes cube-size to s and calls the parent constructor gvm::Message(v, t,

GVMSetCubeSize, i).

Public Methods:

299

virtual void grm: :SetCubeSize: :send(void) - This methods actually sets the size attribute of the

destination gvm::Cube instance.

B.4.23. gvm::SetCylinderSize

The gvm::SetCylinderSize message is intended to set the size attributes of a gvm::Cylinder instance.

Parent Classes: public gym: :Message

Derived Classes: None

GLdouhle gvmn::SetCylinderSize::radius - Value to set the radius attribute of the destination

gym: :Cylinder instance.

GLdouhle gymn::SetCylinderSize: :length - Value to set the length attribute of the destination

gym: :Cylinder instance.

GLint gvm;::SetCylinderSize::sides - Value to set the side count attribute of the destination gvm::Cylinder

instance.

GLint gym: :SetCylinderSize: :rings - Value to set the ring count attribute of the destination gym:: Cylinder

instance.

Public Constructors:

gym: :SetCylinderSize: :SetCylinderSize(gvm:: View& v, double t, gym: :object jndex i, GLdouble ir,

GLdouhle or, GLint s, GLint r) - This constructor calls the parent class constructor gvm: :Message(v, t,

GVM-SetCylinderSize, i) and initializes innerRadius, outerRadius, sides, and rings to ir, or, s, and r

respectively.

Public Method:

virtual void gvm::SetCylinderSize::send(void) - This method commits the changes in the various

attributes of the destination gvm::Cylinder instance.

300

B.4.24. gvm::SetLabel

The gvm::SetLabel message is used to set the label attribute of the destination gvm::Object.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

std::string gvm::SetLabel::label - Value to set the label attribute of the destination gvm::Object instance.

Public Constructors:

gvm: :SetLabel: :SetLabel(gvm:: View& v, double t, gvm: :object index i, std: :string 1) - This constructor

calls the parent constructor gvm::Message(c, t, GVMSetLabel, i) and initializes label to 1.

Public Methods:

virtual void gvm::SetLabel::send(void) - This method actually sets the label attribute of the destination

object.

B.4.25. gvm::SetMode

The gym::SetMode message is used to set the mode attribute of some gvm: :Object instances.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

GLenum gvm::SetMode::mode - Value to set the mode attribute of the destination object.

Public Constructors:

301

gvm::SetMode::SetMode(gvm::View& v, double t, gvm::objectindex i, GLenum m) - This constructor

calls the parent constructor gvm::Message(v, t, GVMSetMode, i) and initialize mode to m.

Public Methods:

virtual void gvm::SetMode::send(void) - This method sets the mode parameter of the destination

gvm::Object instance.

B.4.26. gvm::SetPointSize

The gvm::SetPointSize message is used to set the point size attribute within destination gvm::Object

instances.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

double gvm::SetPointSize::point-size - Value to set the point size attribute in the destination gvm::Object

instance or gvm:: View instance, as appropriate.

Public Constructors:

gvm::SetPointSize::SetPointSize(gvm::View& v, double t, double ps) - This constructor calls the parent

constructor gvm::Message(v, t, GVMSetPointSize, (ulong) -1) and initializes point-size to ps. This

constructor is used when the intended destination of the message is view.

gvm::SetPointSize::SetPointSize(gvm::View& v, double t, gvm::objectindex i, double ps) - This

constructor initializes point-size to ps and calls the parent constructor gvm::Message(v, t,

GVMSetPointSize, i). This constructor is used when the intended destination is the gvm::Object instance

with identifier i.

Public Methods:

302

virtual void gvm::SetPointSize::send(void) - This method actually commits the change to the point size

attribute of the destination gvm::Object or gvm::View instance.

B.4.27. gvm::SetPosition

The gvm::SetPosition message is intended to set the position of the GLUT window.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

GLint gvm::SetPosition::x - New X location of the GLUT window.

GLint gvm::SetPosition::y - New Y location of the GLUT window.

Public Class Constructors:

gvm::SetPosition::SetPosition(gvm::View& v, double t, GLint X, GLint Y) - This constructor initializes

x and y to X and Y respectively and calls the parent constructor gvm::Message(v, t, GVMSetPosition,

(ulong) -1).

Public Methods:

virtual void gvm::SetPosition::send(void) - This method will set the window position of the destination

gvm::View instance to <x, y>.

B.4.28. gvm::SetRotation

The gvm::SetRotation message is intended to set the rotation attribute of a gvm::Node instance.

Parent Classes: public gvm::Message

Derived Classes: None

303

Private Data Members:

std::vector<GLdouble> gvm::SetRotation::rot - Value to set the rotation attribute of the destination

gvm: :Node instance.

Public Constructors:

gym: :SetRotation: :SetRotation(gvm:: View& v, double t, gvm: :objectindex i, std: :vector<GLdouble> r)

- This constructor initializes rot to r and calls the parent class constructor gvm::Message(v, t,

GVM_SetRotation, i).

Public Methods:

virtual void gvm::SetRotation::send(void) - This method actually sets the rotation attribute of the

destination gvm::Node instance.

B.4.29. gvm::SetRotationCenter

The gvm::SetRotationCenter message is intended to set the center of rotation attribute of a gvm::Node

instance.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

std::vector<GLdouble> gvm: :SetRotationCenter::ctrRot - Value to set the rotation center attribute of the

destination gvm: :Node instance.

Public Constructors:

gvm::SetRotationCenter::SetRotationCenter(gvm:: View& v, double t, gvm::objectindex i,

std::vector<GLdouble> c) - This constructor initializes ctrRot to c and calls the parent class constructor

gvm::Message(v, t, GVM_SetRotationCenter, i).

304

Public Methods:

virtual void gvm::SetRotationCenter::send(void) - This method actually sets the center of rotation

attribute of the destination gvm::Node instance.

B.4.30. gvm::SetScale

The gvm::SetScale message is intended to set the scale attribute of a gvm::Node instance.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

std::vector<GLdouble> gvm::SetScale::scale - Value to set the scale attribute of the destination

gvm: :Node instance.

Public Constructors:

gvm::SetScale::SetScale(gvm:: View& v, double t, gvm::objectindex i, std::vector<GLdouble> s) - This

constructor initializes scale to s and calls the parent class constructor gvm::Message(v, t, GVMSetScale,

i).

Public Methods:

virtual void gvm::SetScale::send(void) - This method actually sets the scale attribute of the destination

gvm::Node instance.

B.4.31. gvm::SetScaleCenter

The gvm::SetScaleCenter message is intended to set the center of scaling attribute of a gvm::Node

instance.

Parent Classes: public gvm::Message

305

Derived Classes: None

Private Data Members:

std::vector<GLdouble> gvm::SetScaleCenter::ctrScale - Value to set the scaling center attribute of the

destination gvm: :Node instance.

Public Constructors:

gvm::SetScaleCenter::SetScaleCenter(gvm:: View& v, double t, gvm::objectindex i,

std::vector<GLdouble> c) - This constructor initializes ctrScale to c and calls the parent class constructor

gvm::Message(v, t, GVMSetScaleCenter, i).

Public Methods:

virtual void gvm::SetScaleCenter::send(void) - This method actually sets the center of scaling attribute of

the destination gvm::Node instance.

B.4.32. gvm::SetSize

The gvm::SetSize message is intended to set the GLUT viewport size of the destination gvm::View

instance.

Parent Classes: public gvm::Message

Private Data Members:

GLint gvm::SetSize::width - Value to set the width attribute of the destination gvm::View instance.

GLint gvm::SetSize::height - Value to set the height attribute of the destination gvm:: View instance.

Public Constructors:

306

gvm::SetSize::SetSize(gvm::View& v, double t, GLint w, GLint h) - This constructor calls the parent

constructor gvm::Message(v, t, GVMSetSize, (ulong) -1) and initializes width and height to w and h

respectively.

Public Methods:

virtual void gvm::SetSize::send(void) - This method commits the GLUT viewport size changes for the

intended gym:: View instance.

B.4.33. gvm::SetSphereSize

The gvm::SetSphereSize message is intended to set the size attributes of a gvm::Sphere instance.

Parent Classes: public gvm::Message

Derived Classes: None

GLdouble gvm::SetSphereSize::radius - Value to set the radius attribute of the destination gvm::Sphere

instance.

GLint gvm::SetSphereSize::slices - Value to set the slices attribute of the destination gvm::Sphere

instance.

GLint gvm::SetSphereSize::stacks - Value to set the stacks attribute of the destination gvm::Sphere

instance.

Public Constructors:

gvm::SetSphereSize::SetSphereSize(gvm:: View& v, double t, gvm::objectjindex i, GLdouble r, GLint

sI, GLint st) - This constructor calls the parent constructor gvm::Message(v, t, GVMSetSphereSize, i)

and initializes radius, slices and stacks to r, sI, and st respectively.

Public Methods:

307

virtual void gvm::SetSphereSize::send(void) - This method commits the changes to the attributes of the

destination gvm::Sphere instance.

B.4.34. gvm::SetTorusSize

The gvm::SetTorusSize message is intended to set the size attributes of a gvm:: Torus instance.

Parent Classes: public gvm::Message

Derived Classes: None

GLdouble gvm::SetTorusSize::innerRadius - Value to set the inner radius attribute of the destination

gvm ::Torus instance.

GLdouble gvm::SetTorusSize::outerRadius - Value to set the outer radius attribute of the destination

gym:: Torus instance.

GLint gvm::SetTorusSize::sides - Value to set the side count attribute of the destination gvm::Torus

instance.

GLint gvm::SetTorusSize::rings - Value to set the ring count attribute of the destination gvm::Torus

instance.

Public Constructors:

gvm::SetTorusSize::SetTorusSize(gvm:: View& v, double t, gvm::object_index i, GLdouble ir,

GLdouble or, GLint s, GLint r) - This constructor calls the parent class constructor gvm::Message(v, t,

GVMSetTorusSize, i) and initializes innerRadius, outerRadius, sides, and rings to ir, or, s, and r

respectively.

Public Method:

virtual void gvm::SetTorusSize::send(void) - This method commits the changes in the various attributes

of the destination gvm::Torus instance.

308

B.4.35. gvm::SetTranslation

The gvm::SetTranslation message is intended to set the translation attribute of a gvm::Node instance.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

std::vector<GLdouble> gvm::SetTranslation::trans - Value to set the translation attribute of the

destination gvm::Node instance.

Public Constructors:

gvm::SetTranslation::SetTranslation (gvm:: View& v, double t, gvm::object index i,

std::vector<GLdouble> r) - This constructor initializes trans to r and calls the parent class constructor

gvm::Message(v, t, GVMSetTranslation, i).

Public Methods:

virtual void gvm::SetTranslation::send(void) - This method actually sets the translation attribute of the

destination gvm: :Node instance.

B.4.36. gvm::SetVertex

The gvm::SetVertex message is intended to set the location of the vertex associated with a gvm::Vertex

instance.

Parent Classes: public gvm::Message

Derived Classes: None

Private Data Members:

309

std::vector<GLdouble> gvm::SetVertex::vert - Value to set the location attribute of the destination

gvm:: Vertex instance.

Public Constructors:

gvm::SetVertex::SetVertex(gvm::View& v, double t, gvm::object_index i, std::vector<GLdouble> v) -

This constructor initializes vert to v and calls the parent class constructor gvm::Message(v, t,

GVMSetVertex, i).

Public Methods:

virtual void gvm::SetVertex::send(void) - This method actually sets the location attribute of the

destination gym:: Vertex instance.

B.4.37. gvm::Shape

This class provides basic support for displaying two and three-dimensional shapes to a GLUT window. It

provides support only for rendering color, and nothing for lighting, shading or texturing.

Parent Class: public gvm::Object

Derived Classes: gvm::Shape2D, gvm::Shape3D

Protected Enumerators:

enum gvm::Shape::shape_flags{SFColor, SFPointSize, SFLAST} - This enumerator acts as in index

in the flags array.

Protected Data Members:

std::vector<GLdouble> gvm::Shape::color - Vector containing the color components of the shape

instance. This is used only whenflags[SFColor] is true.

GLenum gvm::Shape::mode - Rendering mode for this shape. It takes on one of the following values

GLPOINTS, GLLINES, GLLINESTRIP, GLLINELOOP, GLTRIANGLES,

310

GLTRIANGLESTRIP, GLTRIANGLEFAN, GLQUADS, GLQUADSTRIP,

GLPOLYGON. The meaning of these values can be found in (Wright 1996) page 172.

GLfloat gvm::Shape::ptsize - Point size to use when rendering using GLPOINTS. This is only used

whenf/ags[SFPointSize] is true.

std::vector<bool> gvm::Shape::flags - The components of this array are used to determine whether the

default values for drawing color or point size are to be used when rendering the shape.

Public Constructors:

gvm::Shape::Shape(gvm::View& v, gvm::objecttype t, gvm::object index i) - This constructor calls

parent constructor gvm::Object(v, t, i), and constructors color(4, -1.0), flags(SFLAST, false), and sets

mode and ptsize to GLPOINTS and 1.0 respectively.

Public Methods:

virtual void gvm::Shape::begin(void) - Begin rendering this shape. It saves the default drawing color and

point size sets the local values for them if the proper elements of flags are set. It then calls

: :glBegin (mode).

virtual void gvm::Shape::end(void) - End rendering this shape. It calls ::glEndO and restores the default

drawing color and point size in the event that the local values were used instead.

virtual bool gvm::Shape::isType(gvm::object-type t) - This routine returns to the calling routine true if

t=GVMShape or gvm::Object::isType(t) returns true.

virtual void gvm::Shape::setColor(std::vector<GLdouble> c) - Sets color to ::resize vector(4, 1.0, c). If

all of the components of c are in the range [0, 1] thenflags[SFColor] is set to true; false otherwise.

virtual void gvm::Shape::setColor(GLdouble r, GLdouble g, GLdouble b) - Sets color to

::makevector(4, r, g, b, 1.0). If r, g, and b are all in the range [0, 1] thenf/ags[SFColor] is set to true;

false otherwise.

311

virtual void gym: :Shape: :setColor(GLdouble r, GLdouble g, GLdouble b, GLdouble a) - Sets color to

::make-vector(4, r, g, b, a). If r, g, b, and a are all in the range [0, 1] thenflags[SF-Color] is set to true;

false otherwise.

virtual void gvm::Shape::setMode(GLenum m) - Sets mode to m.

virtual void gym: :Shape: :setPointSize(GL float ps) - Set pLsize to ps.

B.4.38. gvm::Shape2D

This is the parent class for all two-dimensional shapes. It serves primarily as a placeholder for various data

structures, and has no additional functionality beyond that defined in gvm::Shape.

Parent Class: public gym: :Shape

Derived Classes: gym: :Polygon2D

Protected Constructors:

gvm::Shape2D::Shape2D(gvm::View2D& v, gvm::objectjype t, gvm::object-index i) - This constructor

calls the parent constructor gvm::Shape(v, t, i).

Public Methods:

virtual bool gvm::Shape2D::isType(gvm::objectj-ype t) - This routine returns to the calling routine true

if t=-GVMShape2D or gvm::Shape::isType(t) returns true.

B.4.39. gvm::Shape3D

This is the parent class for all three-dimensional shapes. It serves primarily as a placeholder for various

data structures, and has no additional functionality beyond gvm::Shape.

Parent Class: public gvm::Shape

312

Derived Classes: gvm::Cone, gvm::Cube, gvm::Cylinder, gvm::Dodecahedron, gvm::Icosahedron,

gvm: :Octahedron, gvm: :Polygon3D, gvm::Sphere, gvm: : Tetrahedron, gvm:: Torus

Protected Constructors:

gvm: :Shape3D: :Shape3D(gvm: :View3D& v, gvm: :objecttype t, gvm: :object index i) - This constructor

calls the parent constructor gvm::Shape(v, t, i).

Public Methods:

virtual bool gvm::Shape3D::isType(gvm::objecttype t) - This routine returns to the calling routine true

if t=GVMShape3D or gvm::Shape::isType(t) returns true.

B.4.40. gvm::Sphere

This provides a means of displaying a sphere in a GLUT window. The ::glutSolidSphere(radius, slices,

stacks) and ::glutWireOctahedron(radius, slices, stacks) routines are called to render the sphere.

Parent Class: public gvm::Shape3D

Derived Classes: None

Protected Data Members:

GLdouble gvm::Sphere::radius - Radius of the sphere.

GLint gvm::Sphere::slices - Number of radial slices into which to break the sphere.

GLint gvm::Sphere::stacks - Number of lateral stacks into which to break the sphere.

Public Constructors:

gvm::Sphere::Sphere(gvm::View3D& v, ulong i) - This constructor calls the parent class constructor

gvm::Shape3D(v, GVM_Sphere, i) and initializes radius, slices and stacks to 1.0, 10 and 10 respectively.

Public Methods:

313

virtual void gvm::Sphere::display(void) - Display sphere using ::glutSolidSphere(radius, slices, stacks)

if mode is GLPOLYGON or ::glut WireSphere(radius, slices, stacks) otherwise.

virtual bool gym: :Sphere: :isType(gvm: :object-type t) - This routine returns to the calling routine true if

t=GVM-Sphere or gvm: :Shape3D ::isType(t) returns true.

virtual void gvm::Sphere::set(GLdouble r, GLint si, GLint st) - Set radius, slices and stacks to r, sI, and

St.

virtual void gvm::Sphere::setRadius(GLdouhle r) - Set radius to r.

virtual void gym: :Sphere: :setSlices(GLint s) - Set slices to s.

virtual void gvm::Sphere::setStacks(GLint s) - Set stacks to s.

B.4.41. gvm::Tetrahedron

This provides a means of displaying a tetrahedron in a GLUT window. The ::glutSolidTetrahedron() and

::glut Wire Tetrahedron 0 routines are called to render the tetrahedron.

Parent Class: public gvm::Shape3D

Derived Classes: None

Public Constructors:

gvm:: Tetrahedron:: Tetrahedron(gvm:: View3D& v, ulong i) - This class constructor calls the parent

constructor gvm: :Shape3D(v, GVMjetrahedron, i).

Public Methods:

virtual void gvm::Tetrahedron::display(void) - Display a tetrahedron using ::glutSolitlTetrahedron() if

mode is GLPOLYGON or ::glutfireTetrahedron() otherwise.

314

virtual bool gvm::Tetrahedron::isType(gvm::object-type t) - This routine returns to the calling routine

true if t=GVMTetrahedron or gvm::Shape3D::is Type (t) returns true.

B.4.42. gvm::Torus

The gvm::Torus class provides a means of displaying a torus in a GLUT window. The

:.glutSolidTorus(innerRadius, outerRadius, nsides, rings) and ::glutfireTorus(inner, outer, nsides,

rings) routines are called to render the torus.

Parent Class: public gvm::Shape3D

Derived Classes: None

Protected Data Members:

GLdouble gvm::Torus::innerRadius - Inner radius of the torus.

GLint gvm:: Torus::nsides - Number of sides around a ring.

GLdouble gvm:: Torus::outerRadius - Outer radius of the torus,

GLint gVm::Torus::rings - Number of rings around the torus.

Public Constructors:

gvm:: Torus:: Torus(gvm:: View3D& v, ulong i) - This constructor calls the parent class constructor

gvm: :Shape3D(v, GVMjJTorus, i) and initializes innerRadius, outerRadius, nsides and rings to 1.0, 2.0,

10 and 10 respectively.

Public Methods:

virtual void gym: :Torus: :display(void) - Display a torus using either of the routines

* :glutSolidTorus(innerRadius, outerRadius, nsides, rings) if mode is GLPOLYGON or

* :glutWireTorus(innerRadius, outerRadius, nsides, rings) otherwise.

315

virtual bool gvm::Torus::isType(gvm::object-type 0) - This routine returns to the calling routine true if

t--GVMTorus or gvm: :Shape3D ::is Type(t) returns true.

virtual void gvm::Torus::set(GLdouble i, GLdouble o, GLint n, GLint r) - Sets innerRadius,

outerRadius, nsides and rings to i, o, n and r respectively.

virtual void gvm::Torus::setlnnerRadius(GLdouble i) - Sets innerRadius to i.

virtual void gvmn::Torus::setNSides(GLint n) - Sets nsides to n.

virtual void gvm:: Torus::setOuterRadius(GLdouble o) - Sets outerRadius to o.

virtual void gvm:: Torus::setRings(GLint r) - Sets rings to r.

B.4.43. gvm::ertex

gvm:: Vertex provides the basic functionality for generic vertices. Derived classes deal with vertices in

specific vector spaces, notably 2 and 3-spaces.

Parent Class: public gvm::Object

Derived Classes: gvm:: Vertex2D, gvm:: Vertex3D

Protected Data Members:

std::vector<GLdouble> gvm::Vertex::loc - Location of the vertex.

Protected Constructors:

gvm:: Vertex:: Vertex(gvm:: View& v, gvm::objectype t, gvm::objectgindex i) - This constructor calls the

parent constructor gvm::Object(v, t, i) and initializes loc to either <0.0, 0.0> in the case *this is a

gvmr::Vertex2D instance or <0.0, 0.0, 0.0> when it is a gvm::Vertex3D.

Public Methods:

316

virtual void gvm::Vertex::set(const std::vector<GLdouhle>& v) - This method sets loc to

::resize_vector(boc.sizeO, 0.0, v).

virtual bool gvm::Vertex::isType(gvm::objectjype t) - This routine returns to the calling routine true if

t=GVMVertex or gvm::Object::is Type (t) returns true.

B.4.44. gvm::Vertex2D

gvm:: Vertex2D provides specializes gvm:: Vertex to perform two-dimensional vertex operations.

Parent Class: public gym:: Vertex

Derived Classes: None

Public Constructors:

gvm::Vertex2D::Vertex2D(gvm::View2D& v, ulong i) -This constructor calls the parent class constructor

gvm::Vertex(v, GVMjVertex2D, i).

Public Methods:

virtual void gvm::Vertex2D::display(void) - This routine displays the vertex at its specified location, <

gvm::Vertex::boc[0I, gvm::Vertex:J:oc[l]>

virtual bool gvm::Vertex2D::isType(gvm::object-ype t) - This routine returns to the calling routine true

if t=-GVMVertex2D or gvm:: Vertex::isType(t) returns true.

virtual void gvm::Vertex2D::set(GLdouble x, GLdouhle y) - This method sets the vector

gym:: Vertex: :boc to : :make~j'ector(2, x, y).

B.4.45. gvm::Vertex3D

gvm:: Vertex3D provides specializes gvm:: Vertex to perform three-dimensional vertex operations.

Parent Class: public gym:: Vertex

317

Derived Classes: None

Public Constructors:

gvm::Vertex3D::Vertex3D(gvm::View3D& v, ulong i) - This constructor calls the parent class constructor

gvm::Vertex(v, GVM-Vertex3D, i).

Public Methods:

virtual void gym:: Vertex3D::display(void) - This routine displays the vertex at its specified location, <

gvm:: Vertex: :loc[O] , gvm: :Vertex:J:oc[1] , gvm:: Vertex:J:oc[2]>

virtual boo! gvm::Vertex3D::isType(gvm::object~type t) - This routine returns to the calling routine true

if t=GVMVertex3D or gvm::Vertex::isTypeQt) returns true.

virtual void gym:: Vertex3D: :set(GLdouble x, GLdouble y, GLdouble z) - This method sets the vector

gvm:: Vertex::loc to ::makevector(3, x, y, z).

B.4.46. gvm::View

The gym:: View class is the parent for the two classes specifically intended for two and three dimensional

graphical output, gvm:: View2D and gvm:: View3D respectively.

Parent Classes: public sodl:: Trace

Derived Classes: gvm:: View2D, gvm:: View3D

Protected Data Members:

float gvm::View::aspect - This is the current aspect ratio of the output display. It is updated any time there

is a change in the size of the viewport window.

std::vector<bool> gvm::View::buttonState - This vector is used to keep track of the mouse button states.

When button xxx is pressed, buttonState[GLUT_xx_BUTTON] is true, where xxx is one of (LEFT,

MIDDLE, RIGHT).

318

bool gvm::View::is Visible - This value is true when the window is visible, false otherwise.

std::vector<uint> gvm::View::mouseLoc - This vector is used to track the current mouse position. When

the mouse is at GLUT window location <x, y>, then mouseLoc[O]=x and mouseLoc[l]=y.

std::list<gvm::Message*> gvm::View::msgList - This is the pending message list. It is always sorted by

time stamp. Messages with earlier timestamps are at the front of the list, and later ones are at the back.

ulong gvm::View::nextMessage - This is a counter for the number of messages that have been created for

the view. Each new message is given a unique handle, part of which is the instance number it derived from

the value of the nextMessage data member. As new messages are added, the nextMessage field is

incremented.

gvm::objectindex gvm::View::nextObject - This is a counter for the number of objects that have been

created for the view. Each new object is given a unique handle, part of which is the instance number it

derived from the value of the nextObject data member. As new objects are added, the nextObject field is

incremented.

std::vector<gvm::Object*> gvm::View::nodeList - This is the list of root nodes for the gvm::View

instance. These are polled during the display phase, and each one is displayed in turn.

std::vector<gvm::Object*> gvm::View::objectList - This is the master list of all of the objects in the view.

As each new object obj is created, a pointer to it occupies objectList[obj.getlndexO].

GLfloat gvm::View::ptSize - This is the view's default point size. Any subordinate objects in the view's

scene graph that do not explicitly override the point size will use this default value.

bool gvm::View::refresh - This flag is set to true when there has been a request to refresh the display.

The actual screen refresh occurs during the fossil collection phase.

bool gvm::View::sceneChange - This is set to true when some component of the scene has changed its

state.

319

std::string gvm:: View: :time - This is the time stamp of the current scene.

std: :string gvm::View::title - This acts as a title for the GLUT window containing the scene.

ulong gvm::View::window - This is the GLUT window number for this view. When a GLUT window is

created, it is assigned a unique identifier, which we retain in window.

std::vector<bool> gvm::View::zoom - This is a flag for determining whether or not to zoom into or away

from a scene. When the '+' or '=' keys are pressed, zoom[O] is set to true. When '-' or '-' is pressed,

zoom[l] is set to true.

Protected Constructors:

gvm::View::View(void) - This is the default class constructor for the gvm::View class. It initializes

nextObject, nextMessage, ptSize, sceneChange and refresh to 0, 0, 1.0, false and true respectively. It also

calls the initializers buttonState(3, false), mouseLoc(2, 0) and window(glutCreateWindow("sodl

Display")).

Public Methods:

virtual void gvm::View::addNode(gvm::object index i) - This routine adds to the back of the nodeList

array, objectList[i].

virtual void gvm::View::begin(void)=O - This abstract method is used to set up any view-dependent

settings related to view position, orientation, and the like.

virtual gvm: :object_index gvm: : View: :createObject(double t, gvm: :objecttype type) - This method

scheduled the creation of a new object of type type for time t.

virtual void gvm::View::createObject(gvm::objecthandle h)=O - This abstract method is meant to have

derived classes actually create an object with the handle specified. Once created, a pointer to it is inserted

at objectList[h.first].

320

virtual void gvm::View::display(void) - If isDisplayO returns true, then this method will call the begin

method, set the default point size and perform some boiler-plate OpenGL routines. After that, it calls the

display method for each of the gvm::Node instance pointed to in the nodeList. Afterwards, the end method

is called. Normally, the GLUT run-time system will inform the controlling sodl::GLUTViewManager

instance that a display update needs to occur, which in turn calls this method. It is unwise to directly call

the method, since there is some additional processing that occurs outside of the method that needs to be

performed first. Requests for a redisplay of the screen can be made by a call to ::glutPostRedisplayO.

virtual void gvm::View::end(void) - This method performs some cleanup after the scene graph is

displayed.

virtual void gvm::View::entry(int e) - This method is called from with the controlling

sodl::GLUTViewManager whenever the mouse either enters or leaves the window associated with this

view. Parameter e takes on either of the values GLUTENTERED if the mouse curser entered the

window, or GLUTLEFT if the mouse left the window.

virtual void gvm::View:.fossilCo11ect(double t) - The owning process:View instance calls this method

during incremental fossil collection to time t. This fossil collection routine updates the scene graph,

processing any messages with a time stamp equal to t. There should be no messages with a time stamp less

then t, since those messages should have been processed during an earlier fossil collection cycle.

virtual std::string gvm::View::getTime(void) const - This routine returns time to the calling routine

virtual std::string gvm::View::getTitle(void) const - This routine returns title to the calling routine

virtual ulong gvm:: View::getWindow(void) const - This routine returns window to the calling routine.

virtual bool gvm::View::isDisplay(void)=O - This abstract method returns true exactly when the derived

class instance actually implementing this method has determined that it needs to redraw its scene graph.

virtual void gvm::View::keydown(byte key, int x, int y) - When the GLUT run-time system detects a key

press event for the GLUT window associated with this gvm::View instance, the controlling

321

sod::GLUTViewManager is notified, which in turn calls this method to notify the view. Parameter key is

the ASCII value of the key that was pressed, and the mouse position at the time of the key press is given by

<x, y>.

virtual void gvm::View::keyup(byte key, int x, int y) - When the GLUT run-time system detects a key

release event for the GLUT window associated with this gvm::View instance, the controlling

sodl::GLUTViewManager is notified, which in turn calls this method to notify the view. Parameter key is

the ASCII value of the key that was released, and the mouse position at the time of the key press is given

by <x, y>.

virtual void gvm::View::motion(int x, int y) - When the GLUT run-time system detects an active mouse

motion event (i.e. one where at least one mouse button is pressed while the mouse is moved) in the GLUT

window associated with this gvm::View instance, the controlling sod::GLUTViewManager is notified.

This in turn calls this method to notify the view. The position of the mouse is given by <x, y>.

virtual void gvm::View::mouse(int button, int state, int x, int y) - When the GLUT run-time system

detects an active mouse button event (i.e. one where at least one mouse button changes its state) in the

GLUT window associated with this gvm::View instance, the controlling sod::GLUTViewManager is

notified. This in turn calls this method to notify the view. Parameter button refers to the button that was

actually had the event: GLUTLEFTBUTTON for the left mouse button, GLUTMIDDLEBUTTON

for the middle button or GLUTRIGHTBUTTON for the right button. The state parameter describes the

new mouse button position: GLUTUP for a button release; GLUTDOWN for a button press. The

position of the mouse at the time of the button event is given by <x, y>.

virtual gvm: :Object& gvm: :View: :operator[](gvm ::objectindex i) - This routine returns *objectList[i] to

the calling routine. In the event that i is out of range, this routine will throw an Exception::RangeError.

virtual void gvm::View::overlay(void) - When the GLUT run-time system detects an overlay event in the

GLUT window associated with this gvm::View instance, the controlling sod::GLUTViewManager is

notified, which in turn calls this method to notify the view.

322

virtual void gvm::View::passivejmotion(int x, int y) - When the GLUT run-time system detects a passive

mouse motion event (i.e. one where no mouse button is pressed while the mouse is moved) in the GLUT

window associated with this gvm::View instance, the controlling sodl::GLUTViewManager is notified,

which in turn calls this method to notify the view. The position of the mouse is given by <x, y>.

virtual void gvm::View::resdisplay(void) - This method requests that the GLUT engine redisplay the

scene associated with this view by calling glutSetWindow(window) followed by glutPostRedisplayO.

virtual void gvm::View::reshape(int width, int height) - When the GLUT run-time system detects a

reshape event to size <width, height> in the GLUT window associated with this gvm::View instance, the

controlling sodl::GLUTViewManager is notified, which in turn calls this method to notify the view. In

this case, OpenGL needs to be informed of the change in the viewport parameters, and aspect needs to be

updated to reflect the new window aspect ratio.

virtual void gvm::View::restore(double t) - When the owning process:View instance receives a rollback

request to time t, it calls this method. Since the new t is the new time stamp for this gvm::View instance,

all message previously scheduled for times at or after t are now invalid, and must be removed from

messageList. This method accomplishes this removing them from the front of messageList.

virtual void gvm::View::schedule(gvm::Message* msg) - Messages are scheduled for later processing

with this method. The new message inserted at the back of msgList. By virtue of the Time Warp

algorithm, (*msg).getTimeO is never less than (*messageList.backO).getTimeO. Thus, the messages

appear in msgList in ascending time stamp order from the earliest at the front to the latest in the back.

virtual void gvm::View::setPointSize(GLfloat ps) - This routine sets ptSize to ps.

virtual void gvm::View::setPosition(int x, int y) - This routine sets the position of the GLUT window to

<x, y>.

virtual void gvm::View::setRefresh(bool r) - This routine sets the refresh flag to r.

virtual void gvm::View::setSceneChange(bool s) - This routine sets the sceneChange flag to s.

323

virtual void gvm::View::setSize(int w, int h) - This routine sets the size of the GLUT window to <w, h>.

In this case, the GLUT run-time system will notify the sodl::GLUTViewManager controlling this view of

the change, which will in turn call the reshape method described above.

virtual void gvm::View::setTitle(std::string str) - This routine will set title to str and reset the GLUT

window and icon titles to str.

virtual void gvm::View::specialdown(int key, int x, int y) - When the GLUT run-time system detects a

special key press events for the GLUT window associated with this gvm::View instance, the controlling

sodl::GLUTViewManager is notified, which in turn calls this method to notify the view. Parameter key

takes on one of the following values: GLUTKEY_Fl, GLUTKEYF2, GLUTKEYF3,

GLUTKEYF4, GLUT KEYF5, GLUTKEYF6, GLUT KEYF7, GLUTKEYF8,

GLUTKEYF9, GLUTKEY_FlO, GLUTKEYFll, GLUT-KEYF12, GLUTKEYLEFT,

GLUTKEYUP, GLUTKEYRIGHT, GLUTKEYDOWN, GLUTKEYPAGEUP,

GLUTKEYPAGEDOWN, GLUTKEYHOME, GLUTKEYEND, or GLUTKEYINSERT.

The mouse position at the time of the key press is given by <x, y>.

virtual void gvm::View::special(int key, int x, int y) - When the GLUT run-time system detects a special

key release event for the GLUT window associated with this gvm::View instance, the controlling

sodl::GLUTViewManager is notified, which in turn calls this method to notify the view. Parameter key

takes on one of the listed in the description of specialdown. The mouse position at the time of the key

release is given by <x, y>.

virtual void gvm::View::visible(int vis) - When the GLUT run-time system detects a visibility event (i.e.

one in which the window either becomes visible or hidden) for the GLUT window associated with this

gvm::View instance, the controlling sodl::GLUTViewManager is notified, which in turn calls this method

to notify the view. Parameter vis takes on one of the values GLUTNOTVISIBLE or GLUTVISIBLE.

324

B.4.47. gvm::View2D

The gvm::View2D class expands somewhat the functionality of the gvm::View class above. This extension

is mainly in the form of allowing only certain types of objects to be added to gvm::View::objectList, and

how it handles input events from the user.

Parent Classes: public gvm:: View

Derived Classes: None

Private Data Members:

float gvm:: View2D::transX - This holds the translation factor in the X direction for viewing the scene.

float gvm::View2D::transY - This holds the translation factor in the Y direction for viewing the scene.

float gvm::View2D::sdepth - This is used to position the view at different distances "above" the view,

allowing it to be uniformly scaled.

float gvm::View2D::zNear - This is the near clipping plane.

float gvm::View2D::zFar - This is the far clipping plane

Public Constructors:

gvm::View2D::View2D(void) - This class constructor initializes transX, transY, sdepth, zNear, zFar to

0.0, 0.0, 80.0, 1.0 and 1000.0 respectively.

Public Methods:

virtual void gvm::View2D::addNode(gvm::objectindex n) - This routine will add the gvm::Node2D

instance with index n to the back of gvm:: View::nodeList.

virtual void gvm::View2D::begin(void) - This method performs some scene initialization that is useful in

specifying how to display the scene graph. Among other things, it positions the viewer in a useful location.

325

In addition, if zoom[O] is set, the view zooms into the scene, and when zoom[l] is set, it zooms away from

the scene.

virtual void gvm::View2D::createObject (gvm::object-handle h) - This method will create a gvm::Object

instance of type h.first and with index h.second. Object types are limited to GVMNode2D,

GVMPlygon2D, and GVMVertex2D. Once created, a pointer to the new object is entered into

gym :: View: :objectList[h.second].

virtual void gvm::View2D::end(void) - This method performs some cleanup actions in the view, notably

changing the display buffers to display what had just been drawn.

virtual bool gvm::View2D::isDisplay(void) - This method returns true exactly when the isVisible,

refresh, and sceneChange methods return true. This will enable the scene to be updated on the screen

only when there is a change in the scene graph and when there has been a request to change the display.

virtual void gvm::View2D::motion(int x, int y) - This method changes the view parameters to allow the

user to interact with the scene. When the left mouse button is pressed, the scene is proportionally

translated in plane with the mouse motion. When the middle button is pressed, the scene is scaled

proportionally with the y-displacement of the mouse.

B.4.48. gvm::View3D

The gvm::View3D class expands somewhat the functionality of the gvm::View class above. This extension

is mainly in the form of allowing only certain types of objects to be added to gvm::View::objectList, and

how it handles input events from the user.

Parent Classes: public gvm:: View

Derived Classes: None

Private Data Members:

std::valarray< GLdouble > gvm::View3D::pos - Position of the view point.

326

std::valarray< GLdouble > gvm::View3D::ori - Orientation of the view.

GLdouble gvm::View3D::scale - Zooming factor of the scale.

GLdouble gvm::View3D::zNear - Near clipping plane.

GLdouble gvm::View3D::zFar - Far clipping plane,

Public Constructors:

gvm::View3D::View3D(void) - This constructor initializes pos, ori, scale, zNear and zFar to <0.0, 0.0, -

80.0>, <90.0, 0.0, -45.0>, 1.0, 1.0 and 1000.0 respectively.

Public Methods:

virtual void gvm::View3D::addNode(gvm::objectindex i) - This routine will add the gvm::Node3D

instance with index n to the back of gvm::View::nodeList.

virtual void gvm::View3D::begin(void) - This method performs some scene initialization that is useful in

specifying how to display the scene graph. Among other things, it positions the viewer in a useful location.

In addition, if zoom[O] is set, the view zooms into the scene, and when zoom[l] is set, it zooms away from

the scene.

virtual void gvm::View3D::createObject(gvm::objecthandle h) - This method will create a gvm::Object

instance of type h.first and with index h.second. Object types are limited to GVMCone, GVMCube,

GVMCylinder, GVM_Dodecahedron, GVMIcosahedron, GVMNode3D, GVMOctahedron,

GVMPolygon3D, GVMSphere, GVM_Tetrahedron, GVMTorus and GVM_Vertex3D. Once

created, a pointer to the new object is entered into gvm::View::objectList[h.second].

virtual void gvm::View3D::display(void) - This method performs some setup for displaying the 3D

information in the GLUT window associated with this instance. If zoom[O] is set, the view zooms into the

scene, and when zoom[1] is set, it zooms away from the scene.

327

virtual void gvm::View3D::end(void) - This method performs some cleanup actions in the view, notably

changing the display buffers to display what had just been drawn.

virtual bool gvm::View3D::isDisplay(void) - This method returns true exactly when the

gvm:: View::is Visible, gvm:: View::refresh, and gvm::View: :sceneChange methods return true. This will

enable the scene to be updated on the screen only when there is a change in the scene graph and when there

has been a request to change the display.

virtual void gvm::View3D::motion(int x, int y) - This method is called when an active mouse event

occurs within the GLUT window associated with this gvm::View3D instance. When the left mouse button

is pressed, the scene rotates about the screen x-axis proportional to mouse displacement in the y-direction

and rotation about the y-axis is performed proportionally to mouse displacement in the x-direction. When

the middle button is pressed, the scene is scaled proportionally with the y-displacement of the mouse.

B.4.49. GVM Definitions not associated with a specific class

Enumerators:

enum gvm::message-type{GVMAddNode, GVMAddShape, GVMAddVertex,

GVM_CreateObject, GVM_Refresh, GVMSetActive, GVMSetColor, GVMSetConeSize,

GVM_SetCubeSize, GVMSetCylinderSize, GVMSetLabel, GVM_SetMode, GVM SetPointSize,

GVM_SetPosition, GVMSetRotation, GVMSetRotationCenter, GVM_SetScale,

GVM_SetScaleCenter, GVM SetSize, GVMSetSphereSize, GVM_SetTorusSize,

GVM_SetTranslation, GVM_SetVertex, ... , GVMLASTMESSAGE} - Specifies the various

message types associated with the GVM. There are a number of user messages that can be used for figures

not defined here. These type labels take on the form GVMUserMessageOOO, ... GVMUserMessage255.

enum gvm::objecttype{GVMCone, GVMCube, GVM_Cylinder, GYM_Dodecahedron,

GVM_Icosahedron, GVMNode, GVMNode2D, GVMNode3D, GVMObject, GVMOctahedron,

GVMLPolygon2D, GVMPolygon3D, GVMShape, GVM Shape2D, GVMShape3D, GVMSphere,

GVM_Tetrahedron, GVM_Torus, GVM Vertex, GVM_Vertex2D, GVM_Vertex3D,

328

GVMLAST-OBJECTI - Specifies the various object types associated with the GyM. User defined

processes can make use of pre-specified labels. These type labels take on the form GVMUserProcessOOO,

..GVMUserProcess255.

Type Definitions:

typedef unsigned long gvm::object_index - Unique identifier for a gvm::Object instance assigned to a

specific gvm::View instance.

typdefst: :airgv: :bjet ype, gym: :object_inde> gym: object-handle - A compact form for

specifying both a gvm::Object instance's type and identifier.

Functions:

std::string gvm::typeName(gvm::message type t) - Returns a string representation of the message type t.

std::ostream& gvm::operator«(std::osfream& os, const gvm::messagejtype t) - Sends the string

representation of t to Os.

std::string gvm::typeName(gvm::objectype t) - Returns a string representation of the object type t.

std::ostream& gvm::operator<(std::ostream& os, const gvm::object type t) - Sends the string

representation of t to os.

329

330

Appendix C. Sample Code Listings
These code samples those used to produce the demonstrations packaged with the SODL distribution. In

some cases they have been modified slightly to remove debugging code and for formatting purposes. In all

cases, the essential functionality of the code has been maintained.

C. 1. Battle

C.1.1. Add Environmentmsg
{import message {SetValue})
{message:AddEnvironment(SetValue);}

C.1.2. AddTrack.msg
{import message {TrackMotionEvent} I
{message:AddTrack(TrackMotionEvent);}

C.1.3. AdjustFormation.msg
{import message {MoveTo} I
{import gvm {gvmTank} I

/*
This message is used to set the structure, position, orientation and
spacing of a platoon formation. The platoon will form up on the lead tank
which will be in the center of the formation, and will be at the location
specified in pos. All of the tanks will face direction ori with distance
between adjacent tanks norm(ori). The left flank will be spread along
a line emanating at angle left to the left of the lead tank. When left is
0.0, the left side of the formation will be abreast the lead tank.
Positive values of left will rotate the line forward; negative values will
rotate the line back. The same case holds for the right flank.

There are some predefined formations:
LINE ABREAST => left = 0.0, right = 0.0
VFORMATION => left = -PI/8, right = -PI/8
FORWARD SWEEP => left = PI/8, right = PI/8
COLUMN => left = PI/2, right = -PI/2

message:AdjustFormation (oveTo)
message:AdjustFormation(oveTo)

double:left(0.0); // Left flank angle
double:right(0.0); // Right flank angle

method:setOri(public; void; double:x; double:y;) // Orientation vector vals
{ ori[0]=x; ori[l]=y; ori[2]=0.0;) // Set the orientation valarray

method:setOri(public; void; double:x; double:y; double:z;) // Orientation
(ori[0]=x; ori[l]=y; ori[2]=z;) // Set the orientation valarray

method:setFlank(public; void; double:l; double:r;)
I left=l; right=r; I // Set the formation parameters

method:getLeft(public; double;) { return left; I // Get left flank angle

method:getRight(public; double;) { return right; } // Get right flank angle

method:setForm(public; void; ulong:form;) // Use a standard formation

switch (form)

331

case LINE ABREAST: left = right = 0.0; break;
case V FORMATION: left = right = -PI/8.0; break;
case FORWARDSWEEP: left = right = PI/8.0; break;
case COLUMN: left = PI/2.0; right = -PI/2.0; break;
default: left=right=0.0; // Default is line abreast

}I message:AdjustFormation(MoveTo)

C.1.4. Attack.msg

message:Attack

ulong:track; // Track to attack
method:set(public; void; ulong:t;) { track=t; } // Set the track index
method:get(public; ulong;) { return track; } // Get the track index

// message:Attack

C.1.5. Baftle.proc
{import process {BattleView, Node3D, RedCompany, BlueCompany, Ground,

Environment))
{import message {AddNode3D, AddShape3D, StartSimulation, SetFormation,

SetEnvironment, SetRefresh} I
{import spt {sptEnvironmentObject, sptNewtonianMotion, sptLinearMotion,

sptAngularMotion} I

{debug false)

process:Battle
// process:Battle

BattleView:view; // Main view for the battle
Node3D:root; // Root node for the view
Ground:ground; // Play region
BlueCompany:blue; // Blue force
RedCompany:red; // Red force
Environment:environment; // Environment in which simulation exists

mode:Default
// mode:Default

node:start sim[StartSimulation:strt] // Bootstrapping message
[AddNode3D:an=>(view;), // Add a node to the main view
AddShape3D:as=>(root;), // Add the shape to the root node
SetEnvironment:se=>(blue; red; ground;),
SetRefresh:sr=>(view; red; blue;)]

I // node:start sim[StartSimulation] [...
EngineStand::stand.addHold(l.0); // Set a hold at time 0.0
an.add(root); // Add the root node to the view
as.add(ground); // Add the ground to the node
se.setNode(root); // Tell the forces of the root node
se.setEnvironment(environment); // Set the environment
sr.set(0.5); // Refresh rate

// node:start sim[StartSimulation] [...]
// mode:Default

// process:Battle

C.1.6. BattleView.proc
{import process {View3D, Tank, CommandPost, NewtonianMotion, Munition,

Ground)
{import message {SetTankState, SetNewtonianMotion, Destroyed, Explosion) I
{import gvm {gvmBattleView, gvmNewtonianMotion, gvmCommandPost, gvmTank,

gvmSetTankState, gvmMunition, gvmGround, gvmSetNewtonianMotion,
gvmGrid, gvmSetActive, gvmExplosion} I

332

Idebug false)

process: BattleView)View3D)
I1 process:BattleView(View3D)

method:init (public; void;)
Imethod:init(public; void;)

view =new gvm::BattleView; // Create a new view
View::init)); IICall the parent class initializer
view->setSize(1020,1063); IISet the size of the window

1method:init~public; void;)

method:getGVMType~protected; gym: :object type; ptype:t;)
// method:getGVMType(protected; gym: :object type; ptype;)

switch (t) IIWhich one is it?

case SPTTank: return gvm::GVMTank;
case SPTCommandPost: return gvm::GVM_-CommandPost;
case SPTMunition: return gvm::GVMMunition;
case SPT_-Ground: return gvm::GVMGround;
default: return View3D: :getGVMType(t);

IIswitch~t)
Imethod:getGVMType~protected; gvm::object type; ptype;)

mode: Default
1mode:Default

node: setTankState [SetTankState :in] []
I // node:setTankState [SetTankState:in] []

view->schedule(new gvs::SetTankState(*view,getTime (),in.index,
in.az,in.azRate,in.azStart,in.azStop,
in.el,in.elRate,in.elStart,in.elStop))
// node:setTankState [SetTankState:in] []

node:setNewtonianMotion[SetNewtonianMotion:in] []
// node:setNewtonianMotion[SetNewtonianMotion:in] []

view->schedule (new gym: :SetNewtonianMotion(*view,getTimneo,
in.index, in.geto));

// node:setNewtonianMotion[Set~ewtonianMotion:in] []

node:destroyed[Destroyed:in] [1
// node:destroyed[Destroyed:in] []

view->schedule (new gym: :SetActive(*view, getTime)), in.index, false));
// node:destroyed[Destroyed:in] [1

node:explosion[Explosion:in] []
// node:destroyed[Destroyed:in] []

view->schedule~new gym: :Explosion)*view,getTime)),in.index,in.geto))
1node:destroyed[Destroyed:in] []

// mode:Default
Iprocess:BattleView)View3D)

C.1.7. BlueCompanyproc
{import process {Company}
(import message {StartSimulation, SetColor, SetFormation, SetLinearPosition,

MoveB'ormation)
(import spt {sptEnvironmentObject}
{import gym {gvmnTank}
(import {<math.h>}

prcs:BuImpn Cmay
1/ process: Blueompany (Company

Iehdii (public; void;)(Comany
II methodninitupublic;vvoid;

Company: :init)); IIInitialize the parent construct first
view->setTitle)"Blue Tactical View"); // Blue view title
force = BLUE; IIThis has force designator "BLUE"
view->setPosition(1032,574); // Set the position of the window

333

view->setSize(563, 516); //Set the size
/method:init(public; void;)

mode: startup
Imode:startup

node:start[StartSimulation:in] 1/Upon startup
[SetColor:sc=>(platoons; cp;), // Set the color of the objects
SetFormation:sf[]=>(platoons[@] ;(, // Platoon formation
SetLinearPosition:slp=>(cp;), 1/Command post position
MoveForrnation:smove=>(platoons[3];) :(10.0),
MoveFormation:mf[l=>(platoons[@];):(@<3 ? 10.0 : 10.0+@*5.0)]

// node:start[StartSimulation:in] [...
sc.set(0.0, 0.0, 1.0, 1.0); 1/Set the color of subordinates to blue
double r =sqrt(5000.0); // Range between tanks
for (uint i=0; i~platoons.size((; ++i) IILoop over the platoons

double x =8500+r*((double) i(; IILocation
sf.push back(me); //create a new message
sf[i].setPos(x,x); /1Set the platoon position
sf[i] .setOri(-r, -r); 1/Set the platoon orientation & spacing
sf[i].setForm(LINEABREAST); //Use line abreast formation
if (i==0)

smove.setPos(x,x); I Move this platoon up slightly
smove.setOri(-r, -r);
smove.setForm(LINEABREAST);

mf.pushback(me(; //Create a new move formation message
if (i<3) //If any of the first three platoons

x = 9500+r* ((double) i);I Destination location
mf[i] .setPos~x,x); IISet the platoon position
mf[i] .setOri)-r, -r); //Set the platoon orientation & spacing
mf[i].setForm(LINEABREAST); IIUse line abreast formation

) /1 if (i<3(
else /1if (i>=3)

double a = 0.125*PI; IIAngle to place tanks relative diagonal
double s = sin(s); // Sin of angle from diagonal
double h = 3500.0*sqrt(2.0+(s-2.0)*s); // distance from CP
double theta = l.25*PI + (i==3 ? -a : a); // Angle for this platoon
mf[i] .setPos (9500+h*cos (theta), 9500+h*sin(theta))
mf[i] .setOri(-r, -r); IISet the platoon orientation & spacing
mf[i].setForm(VFORM4ATION); 1/Use line abreast formation

/else from if (i<3)
/for (uint i=0; i<sf.size)(; +±i)

slp.set(9500.0, 9500.0, 0.0); 1/Set the position of the command post
/node:start[StartSimulation:in] [..]

// mode:startup
1/process :BlueCompany (Company)

C.1 .8. ChangeTrack.msg
{import message (TrackMotionEvent)
{message:ChangeTrack(TrackMotionEvent(;)

C.1 .9. Command Post. proc
(import process (SensorTrack)
(import message {AddShape3D, SetColor, UnitSetup, RegisterEnvironmentobject)
(import spt (aptEnvironmentObject)

process:CommandPost (SensorTrack)
Iprocess:CommandPost (SensorTrack)

mode: Default
I / mode:Default
node:unitSetup[UnitSetup:in] /1Setting the environment

[RegisterEnvironmentObject:out=>(in.environment;)(, IIReg

334

AddShape3D:as=>(in.getNode 0;), /1Ensure display
SetColor:sc=>(me;)] // Proper color

// node:unitSetup[UnitSetup:in([SetEnvironment:se)
out.setForce(force = in.getForce()); /1Set the force component
out.setRadius(radius = in.getRadiuso); /1Set the sensor radius
out.set~otion(nm); //Set the newtonian motion parameters
as.add(me); 1/Add this as a subordinat to the node
if (force==BLUE) sc.set(0.0, 0.0, 1.0); 1/Set the proper color
else if (force==RED) sc.set~l.0, 0.0, 0.0);
else sc.set(l.0, 1.0, 1.0);

Inode:unitSetup(UnitSetup:in] [SetEnvironment:se]
// mode:Default

Iprocess :CormandPost)SensorTrack)

C.1 .10. Company.proc
{import process {Platoon, CommandPost, Environment)
{import message {SetEnvironment, UnitSetup, AddTrack, ChangeTrack, LoseTrack,

SetNewtonianMotion, RefreshDisplay, StartSimulation,
SetRefresh, Destroyed)I

{import spt {sptNewtonian~otion)
(import gym {gvmTacticalView, gvmTacticalGrid, gvmTrack, gvmAddTrack,

gvmChangeTrack, gvmDeleteTrack, gvmRefreshJ
(import {"GLUTView~anager.h", <GL/glut.h>, <math.h>l

{debug false)

process :Company
I/ process:Company

Platoon:platoons[5]; /1The platoons composing this company
bool:active[5] (true); IIAll of the platoons are active
CommandPost:cp; 1/Command post for the company
process:environment; //Environment in which the simulation exists
ulong: force (NEUTRAL); IIForce flag
double:tankSensorRange(2000.0); IIDefault tank sensor range
double:cpSensorRange(5000.0); IIDefault command post sensor range
ulong:trackCount[]; 1/Number of platoons tracking each object
spt::Newtonian~otion:tracks[]; // Actual objects being tracked
ulong:trackForce[]; 1/Force association of the tracks
gvm::TacticalView*:view; // Tactical view for the company
double:refreshlnterval(0.01); /1Time between consecutive refreshes

method:init(public; void;)
// method:init~public; void;)

view = new gvm::TacticalView; // Create a new view
dynamic_cast<sodl: :GLUTViewManager&>(*EngineStand: :stand.vm).

addView (view);
Imethod:init(public; void;)

method:restore (public; void;)
/method:restore(public; void;)

view->restore~getTime))); // Rollback the view to time t
/method:restore~public; void;)

method:fossilCollect (public; void;)
/method: fossilCollect (public; void;)

view->fossilCollect(getTime))); IIFossil collect the view up to time t
Imethod:fossilCollect (public; void;)

mode: startup

node:start[StartSimulation:in] [RefreshDisplay:out=>(me;) :(0.0)] {I

node:unitSetup[SetEnvironment:in / Setting the environment
[UnitSetup:pl_us=>)platoons;), // Setup the platoons
UnitSetup:cp_us=>)cp;)] //Setup the command post
/1node: setEnvironment [SetEnvironment:in] [SetEnvironment: se]

environment=in.getEnvironmento; // Set subordinate environs
p1_us.set~force, tankSensorRange, environment, in.getNode());

335

cp_us.set(force, cpSensorRange, environment, in.getflode();

/1node: setEnvironment [SetEnvironment: in] [SetEnvironment: se]

mode :run

node:setNewtonianMotion[SetNewtonianMotion:in] []
// node: setNewtonianMotion [SetNewtonianMotion :in] []

if (trecks.size() <= in.index) //If we need to increase storage

tracks.resize(in.index+l); 1/Resize the track array
trackCount.resize(in.index+l, 0); 1/Resize the counter
trackForce.resize(in.index+l, 0); //Resize the counter

1if (tracks.size() <= in.index)
tracks[in.index] = in.nm; // Save the motion paramter

if)trackCount[in.index]==0) IIIs this a new friendly track?

double rad=in.getSource().getTypeo==SPTComsand~ost ? cpSensorRange
:tankSensorRange;

view->schedule (new gym: :AddTrack(*view, getTimeQ, in.index,
an.nm, rad, force));

trackCount[in.index] = 1; /1Increment the number of trackers
trackForce[in.index]=force; // Set track identity

Iif (tracktount[in.index]==O)
else 1/If we've seen this one before

view->schedule(new gym: :ChangeTrack(*view, getTime(), in.index,
in.nm));

/node: setNewtonianMotion[SetNewtonianMotion:in []

node:setRefreshlnterval [SetRefresh:in] []
{refreshlnterval = in.refreshlnterval;

node: refresh [Refreshtisplay:in]
[Refreshflisplay:out=> (me;): (in.getTimefl+refreshlnterval)I

// node:refresh[RefreshDisplay:in] [RefreshDisplay:out)
view->schedule (new gym: :Refresh(*view,getTime))); // Schedule refresh

Inode:refresh[RefreshDisplay:in] [RefreshDisplay:out]

node:addTrack[AddTrack:in] []
IInode:addTrack[AddTrack:in] []

if (tracks.srze() <= in.getTrackfl) /1If we need to increase storage

tracks.resize(in.getTrackoi+l); //Resize the track array
trackCount.resize(in.getTracko+l, 0); IIResize the counter
trackForce.resize(in.getTracko+l, 0); 1/Resize the counter

/if (tracks.size() <= in.getTrackQ)

if (trackCount[in.getTrack()]==O)
view-oschedule (new gym: :AddTrack(*view, getTimeWo, in.getTracko,

in.motion, -1, in.getForceo));

tracks[in.getTrack))] = in.motion; // Save the motion paramter
trackCount[in.getTracko]++; 1/Increment the number of trackers
tracktorce[in.getTrack() =in.getForceyo; // Set track identity

// node:addTrack[AddTrack:in] []

node:changeTrack[ChangeTrack:in] [3
// node:changemrack[ChangeTrack:in] []

if (tracks[in.getTrack()] .getStartTime()! in.motion.getStartTime()

view->schedule(new gym: :ChangeTrack(*view,getTime(),in.getTrackfl,
in.motion))

tracks[in.getTracko] = in.motion; //Save the motion paramter

Inode:changeTrack[ChangeTrack:in] []

niode:loseTrack[LoseTrack:in] [3

336

/node:loseTrack[LoseTrack:in] []
-trackCount[in.getTracko]; //Reduce the number of trackers by 1

if (trackCount[in.getTrack()]==O)
view->schedule (new gym: :DeleteTrack(*view,getTimeo)

in.getTrack());
// node:loseTrack[LoseTrack:in][H

node:destroyed[Destroyed:in] [] /1Upon notification of a unit's loss
// node:destroyed[Destroyed:in] [1

if (in.getSource().getTypeo) SPT_CommandPost) 1/If CF destroyed

std::cout << me «<" lost." << std::endl; //This team lost
exit (0); // Don't do this at home

I // if (in.getSourceo).getType() == SPTCommandPost)
else 1/The notification should have come from a platoon

if (in.index == ((ulong) -1)) //If the platoon was lost

bool a =false; /1Accumulator to determine company status
for (ulong i=0; i<platoons.sizeo; ++i) IILoop over all platoons

if (in.getSourceo==platoons[i]) IIIf this platoon was it
active[i]=false; 1/It is now inactive

a =a 11 activeti]; 1/Accumulate activity
/for (ulong i O; i<platoons.sizeo; ++i)

if (!a) 1/If all of the platoons are destroyed

std::cout << me << " surrenders." << std::endl; // This team lost
exit (0); /1Don't do this at home

/if (in-index ==((ulong) -1))
else 1/if (in.index ((ulong) -1))

trackCount[in.index]=((ulong) -1); /1No longer tracking tank
view->schedule(new gym: :DeleteTrack(*view,getTime(),in.index))

/else from if (in.getSource.getTypeo==SPTCommandPost)
/node:destroyed[Destroyed:in] []

// mode:startup
/1process: Company

C.1 .11. Destroyed.mg
{import message {SetValue}
fmessage:Destroyed(SetValue);

C.1 .12. Environment.proc
{import message (RegisterEnvironmentObject, AddEnvironment, AddTrack,

LoseTrack, ChangeTrack, SetNewtonian~otion, ScheduleAddTrack,
ScheduleLoseTrack, Explosion, Impact, Nit, Destroyed)

{import spt {sptLinear~otion, sptLinearMotion, sptEnvironmentObject, sptDefs}
{import std {<map>}
{import {<math.h>l

prcs:Eniomn
// process:Environmen

spt::EnvironmentObject:motion[]; 1/object motion parameters
process:objects[]; IIAssociated process handles
std::set<ulong>:tracksH]; /1List of sensor/track associations
bool :active)]; // Active list of sensor/tracks

method:trackTimes (public; std: :vector<double>; spt: :EnvironmentObject&:s;
spt: :Environmentabject&:t;)

// method:trackTimes(public; std::vector<double>; Linear~otion; ...

double time = getTime(); //Get the current time
spt::vertex p = t.lp(time)-s.lp~time); //Relative position
spt::vertex v = t.lv(time)-s.lv(time); //Relative velocity

337

std::vector<double> rv; //Return the detect/loss times
double a =dot~v,v); IIGet the polynomial coefficients
double b = 2*dot~p,v);
double c =dot(p,p)-s.rad))*s.rad));
double disc =b*b-4*a*c;
if (a > 0.0 && disc > 0.0) IIIf there are more than one real roots

double tl =time+(-b+sqrt(disc))/(2*a);
double t2 =time+(-b-sqrt(disc))/)2*a);
rv.push-back~min(tl, t2)); //Entry time into sensor range
rv.push_back~max(tl, t2)); /1Exit time from sensor range

p =t.lp~t2)-s.lp(t2);

/if (a > 0.0, && disc > 0.0)
else if (a==0.0 && c<0.0) IIIf rel vel is 0 & track in range of sensor

// Track has always been and will alway be in sensor range
rv.push -back(-Clock::getEndTime))); 1/A long time ago
rv.push back(2.0*Clock: :getEndTimeo); // Forever

Ielse if (a==0.0 && c<0.0)

return rv; //Return the times
// method:trackTimes(public; std::vector<double>; LinearMotion; ...

method:configure(public; void; std: :vector<AddTrack>&:at;
ulong:sensor; ulong:track;)

Imethod:configure(public; void; std::vector<AddTrack>&:at; ..

at.push back(me); // Generate new message
at.back).addDest(objects[sensor]); IIThe message goes to sensor
at.back)).setMotion(motion[track]); IISet track motion parameters
at.back)).set(track, motion[track] .iffo)); IISet identifier info

Imethod:configure~public; void; std::vector<AddTrack>&:at;..

method:configure(public; void; std: :vector<LoseTrack>&:lt;
ulong: sensor; ulong:track;)

Imethod:configure(public; void; std::vector<LoseTrack>&:at;..
lt.push_back(me); // Generate new message
lt.backoYaddDest(objects[sensor]); //The message goes to sensor
lt.back().set(track, motion[track] .iff))); // Set track id info

// method:configure(public; void; std::vector<LoseTrack>&:at; ..)

method:configure~public; void; std: :vector<ScheduleAddTrack>&:at; double:t;
ulong:sensor; ulong:track;)

Imethod:configure~public; void; std::vector<ScheduleAddTrack>&:at;. ..
at.push_back (me); // Generate new message
at.backo.addDest(me); /1The message comes to me
at.back().setTime(t); // With time stamp t
at.back)).set(sensor, track); //Set sensor and the track indices
// method:configure~public; void; std::vector<ScheduleAddTrack>&:at; ...)

method:configure (public; void; std: :vector<ScheduleLoseTrack>&:lt;
double:t; ulong:sensor; ulong:track;)

1method:configure~public; void; std::vector<ScheduleLoseTrack>&:lt;. ..
lt.push_back~me); // Generate new message
lt.back)).addDest~me); //The message comes to me
lt.back)).setTime~t); // With time stamp t
lt.back)).set~sensor, track); IISet the sensor and the track indices
// method:configure~public; void; std::vector<ScheduleLoseTrack>&:lt; ...)

method:testDetect~public; void; ulong:sensor; ulong:track;
std: :vector<ScheduleAddTrack>&:sat;
std: :vector<ScheduleLoseTrack>& :slt;
std: :vector<AddTrack>& :at;
std: :vector<LoseTrack>&:lt;)

// method:testDetect~public; void; ...)
std::vector<double> t =trackTimes~motion[sensorl, motion~track));
double mt=min~motion[track] .getStopTime)), motion~sensor] .getStopTime)));

if)active[track] && active[sensor])

if)t.empty)) && /1If sensor never sees track
tracks Etrack] .find~sensor) != tracksftrack] .end))) /1If known

338

configure(lt, sensor, track); 1/It is no longer known
Iif (t.empty)) &&..)

else if (!t.empty))) //If there ere detection times

if (t[O]<getTime)) && t[l]>getTime))) /1Is track currently in range

if (tracks[track] .find~sensor)==tracks [track] .endo) // Not known?

tracks [track] .insert (sensor) ; IIAssociate track with sensor
configure~at, sensor, track); IIConfigure sensor notification

// if (tracks[track) .find~sensor)==tracks[track] .endo)
if (t[l]<mt) IIShould we schedule a LoseTrack?

configure(slt,t[l],sensor,track); // Configure lose track message
// if)t[l]<mt)

Iif (t[O]<getTime() && t[l]>getTimeO)

else if (t[O]>getTime)) && t[O]<mt) IIIf entry will occur

configure(sat, tEOl, sensor, track); IIConfigure a new message
if (t[l]<mt) /1If the exit will occur

configure~slt, t[l], sensor, track); IIConfigure a new message
// if (t[l]<mt)

Ielse if)t[O]>getTime)) && t[O]<mt)
// if)!oldTimes.empty))

/if)active[track] && active[sensor])
Imethod:testDetect~puhlic; void;..

method:symetricDetect~public; void; ulong:sl; ulong:s2;
std: :vector<ScheduleAddTrack>&:sat;
std: :vector<ScheduleLoseTrack>&:sit;
std: :vector<AddTrack>&:at;
std: :vector<LoseTrack>&:lt;)

Imethod:symetric~etect~public; void; ...)
std: :vector<double> t = trackTimes)motion[sl], motion[s2]);
double mnt=min~motion[sl] .getStopTime)), motion[s2] .getStopTimeofl;

if (active~sl] && active[s2])

if (t.empty)) && IIIf sl never sees s2

tracks[s2] .find(sl) !=tracks[s2] .end))) IIf known

configure(lt, sl, s2); IIIt is no longer known
configure~lt, s2, al); iiIt is no longer known

Iif (t.empty)) &&..)
else if)!t.empty()) 1/If there are detection times

if (t[O1<getTime)) && t[l]>getTime))) IIIs track currently in range

if (tracks[sl] .find~s2)==tracks [sl] .end()) Iand not known

tracks[s2] .insert(sl) ; /1Associate a2 with sl
tracks[sl] .insert(s2); IIAssociate sl with s2
configure~at, sl, a2); //Configure sl notification
configure~at, s2, sl); IIConfigure s2 notification

// if)tracks[s1].find~s2)==tracks[sl].endLo)
if)t[l]<mt) IIShould we schedule a LoseTrack?

configure~slt,t[l],sl,s2); 1/Configure lose track message
configure~slt,t[l],s2,sl); 1/Configure lose track message

// if)t[l]<mt)
/if)t[O]<getTime() && t[l]>getTimeo)

else if (t[O]>getTime)) && t[O]<mt) /1If entry will occur

configure(sat, t[O], sl, a2); IIConfigure a new message
configure(sat, t[O], s2, sl); 1/Configure a new message

if)t[l]<mt) /1If the exit will occur

configure~slt, t~l], sl, s2); IIConfigure a new message
configure(slt, t~l], s2, sl); /1Configure a new message

339

// if (t[ll<mt)
Ielse if (t[0]>getTime() && t[01<mt)

// if (!oldTimes.emptyo)
/if (active[sl] && active[2])

Imethod:symetricDetect(public; void; ...)

method:canSense(public; hood; ulong:i;) // Index of sensing object
// method:canSense(public; bool; ulong:i;)

return (motion~l] .iff() == RED 11 motion[i] .iff() == BLUE) && active[i];
Imethod:canSense(public; bool; ulong:i;)

method:test(public; void; std::string:s;)

method:genTrackMessages(public; void; ulong:changed; // Changed obj index
std: :vector<ScheduleAddTrack>&:sat;
std: :vector<ScheduleLoseTrack>& :sit;
std: :vector<AddTrack>& :at;
std: :vector<LoseTrack>&:lt;)

/method::genTrackMessages (public; void; ulong:changed;..
ulong force =motion~changed] .iffo; // Get the force
if (canSense(changed)) 1/If changed object can have a sensor

for (ulong i=0; i<motion.sizeo; ++i) //Loop over the other objects

double iforce = motion[i] .iffo; 1/Get next object's force
if (canSense(i) && force!=iforce)// Is this sensible

// If forces are opposed to each other
if (motion[i].rad() == motion[changed].rado) //Do both at once?

symetricDetect(i, changed, sat, slt, at, lt);
else IIIf the sensor radii differ between objects

testDetect(i,changed,sat,slt,at,lt); IICheck with i as sensor
testDetect(changed,i,sat,slt,at,lt); // Check with changed sensor

1else from if (motion[i].rad() == motion[changedl.rado))
// if (canSense(i) && force!=iforce)

else if (iforce != force) IIIf motion[i] has no sensing capability

testDetect(changed,i,sat,slt,at,lt) ; // Check with motion~changed]

Ifor (ulong i=0; i<motion.sizeo; ++i)
// if (canSense(changed))

else if (active~changed]) IIIf changed is not a sensing object
for (ulong i=0; i<motion.sizeo; ++i) 1/Loop over everything else

if (canSense~i)) // Is it a sensor?
testDetect(i,changed,sat,slt,at,lt); 1/Test with changed as track

// method::genTrackMessages (public; void; ulong:changed;..

method:inRange(public; bool; ulong:sensor; ulong:track;)
// method:inRange(public; bool; ulong:sensor; ulong:track;)

double adjTime =getTime)) + 0.0001; // Get time slightly ahead
double d = motion[sensor] .rad)(*motiontsensor] .rado; // Square of range
apt: :vertex rp = motion[track] .lp(adjlime)- motion~sensor] .lp(adjTime);
return (dot(rp, rp) <= d); // Is it really in range?

// method:inRange(public; bool; ulong:sensor; ulong:track;)

mode: Default
Imode:Default

node:register~bject[RegisterEnvironmentobject:in 1 Reguest both
[AddEnvironment:out=>(in.getSourceLo;), // Confirm
ScheduleAddTrack:sat[], // Pending detections
ScheduleLoseTrack:slt[], IIPending track losses
AddTrack:at[], IIAdd track notifications
LoseTrack:lt[]] /Lose track notifications

Inode: registerObject [RegisterEnvironmentObjecti [AddEnvironment]
out.index = motion.size(); // Report back to source its index
motion.push-back(spt: :Environmentobject (in.getForce o,

in.getRadiuso)); Inew st
static cast<spt: :NewtonianMotion&>(motion.back())=in.getMotion((;
objects.push-back(in.getSource))); IISave the process handle

340

tracks.push back(std::set<ulong>()); // Create a new one
tracks.back().clear) // Clear the set
active.push back(true); // Track is currently active
genTrackMessages(motion.size)-l, sat, slt, at, lt); // Update messages

// node:registerObject[RegisterEnvironmentObject] [AddEnvironment]

node:setNewtonianMotion[SetNewtonianMotion:in] / Something is moving
[ScheduleAddTrack:sat[], // Schedule detects
ScheduleLoseTrack:slt[], // Scheduled loses
AddTrack:at[], I/ Current detects
LoseTrack:lt[], // Current detects
ChangeTrack:ct] // Change the track direction

{/ node:setNewtonianMotion[SetNewtonianMotion:in][...
staticcast<spt::NewtonianMotion&>(motion[in.index])=in.get(;
genTrackMessages(in.index,sat,slt,at,lt); // Update things
std::set<ulong>::iterator i; // Index for sensors knowing about track
for (i=tracks[in.index].begin); i!=tracks[in.index].end(); ++i)
ct.addDest(objects[*i]); // Notify the sensors tracking the track

ct.setMotion(motion[in.index]); // Set motion parameters
ct.set(in.index,motion[in.index].iff)); // Set track ID params

// node:setNewtonianMotion[SetNewtonianMotion:in][...

node:addTrack[ScheduleAddTrack:in]
[AddTrack:out=>(objects[in.getSensor(];)]

I // node:addTrack[AddTrack:in] [AddTrack:out=>(in.getSensor(]
ulong track = in.getTrack); // Get the track index
ulong sensor in.getSensor(; // Get the sensor index
bool ir = inRange(sensor, track) && active[sensor] && active[track];
bool im = tracks[track].find(sensor) == tracks[track].end));
if (ir && im) // If in range & not alreay known to sensor

out.setMotion(motion[track]); // Set track motion paramters
out.set(track, motion[track].iff()); // Set identifier info
tracks[track].insert(sensor); // Register the sensor

// if (inRange(sensor, track) && ...)
else out.setTX(false); // Don't send the message

// node:addTrack[AddTrack:in] [AddTrack:out=>(in.getSensor)]

node:loseTrack[ScheduleLoseTrack:in]
[LoseTrack:out=>(objects[in.getSensor)];)]

{I node:loseTrack[LoseTrack:in] [LoseTrack:out=>(in.getSensor()]
ulong track = in.getTrack); // Get the track index
ulong sensor = in.getSensor(); // Get the sensor index

bool ir = inRange(sensor, track) && active[sensor] && active[track];
bool im = tracks[track].find(sensor) == tracks[track].end));
if (!ir && !im) // If out of range & known to sensor

out.set(track, motion[track].iff)); // Format message payload
tracks[track].erase(sensor); // Remove sensor from tracker list

// if (inRange(sensor, track) && ...)
else out.setTX(false); // Don't send the message

// node:loseTrack[LoseTrack:in] [LoseTrack:out=>(in.getSensor)]

node:explosion[Explosion:in]
[Impact:out[],Hit:h=>(in.getSource);)]

// node:explosion[Explosion:in] [Impact:out[], Hit:h]
for (ulong i=0; i<motion.size); ++i) // Loop over all of the objects

spt::vertex diff = in.get()-motion[i].lp(getTime));
if (dot(diff, diff)<9.0) II If they were within 3m of impact

out.push back(me); // Add message to inform the target it was hit
out.back)).addDest(objects[i]); // Add object as a destination
h.add(i); // Set the track index of object hit

// if (dot(diff, diff)<9.0)
// for (ulong i=O; i<motion.size); ++i)

}I node:explosion[Explosion:in] [Impact:out[], Hit:h]

node:destroyed[Destroyed:in] I/ Something was destroyed
[LoseTrack:out] // A bunch of track losses

341

Inode:destroyed[Destroyed:in] [LoseTrack:out[]]
if (active[in.index]) IIIf the object is already inactive

active[in.index] false; IIobject can no longer sense
out.set(in.index, motion[in.index].iff()); // Set the track index
std::set<ulong>::iterator i; /1Used to loop over sensors of track
for (i~tracks[in.index].begin(); i!=tracks[in.index].end(); ++i)

out.addoest(objects[*i]); // Inform the sensors
tracks[in.index) .clear() I Delete the set of tracks

else out.setTX(false); 1/Don't transmit output message
} II node:destroyed[Destroyed:in] [LoseTrack:out[I]]

// mode:Default
/process: Environment

C.1.13. Explosion.mg
{impurt message {SetValue} I
(import apt {sptDefs} I

message: Explosion (SetValue)
Imessage:Explosion

spt::vertex:pos(O.O, 3); /1Initial position of the munition

mnethod:set(public; void; spt::vertex:p;) {pos~p;
mnethod:get(public; spt::vertex;) {return pos;I

/message:Explosion

C.1.14. Fire.msg
{import spt {sptDefs}

message: Fire
{ /1 message:Fire

double:muzzle velocity; IIMuzzle velocity of the munition
double:azimuth; IIAzimuth of the projectile motion (in radians)
double:elevation; /1Elevation of the projectile motion (in radians)
spt::vertex:pos(O.O, 3); // Initial position of the munition
spt::vertex:vel(C.0, 3); IIVelocity vector of firing platform

mnethod:set(public; void; double:mv; 1/Muzzle velocity
double :a; // Azimuth
double:e; /1Elevation
apt: :vertex:p; IIPosition
spt::vertex:v;) 1/Velocity

Imethod:set(public; void; double; double; double; double[];)
muzzle velocity = my; /1Save the muzzle velocity
azimuth = a; IISave the azimuth
elevation = e; /1Save the elevation
po5 = p; /Save the position
vel = v; /1Save the velocity

/method:set(public; void; double; double; double; double[];)
I II message:Fire

C.1 .15. FormationMove.mg
{message :FormationMove; I

C.1.16. Ground.proc
{import process {NewtonianMotion} I
{process:Ground(NewtonianMotion);

342

C.1.17. Hit.mnsg
{import std {<vector>}

message :Hit
1message:Hit

ulong:trackl); IITrack number of object, -1 if nothing was hit
method:add(public; void; ulong:t;) { track.push_hack(t); } 1Add the track
method:get(puhlic; std::vector<ulong>;) {return track; 1 1Report tracks

I II message:Hit

C.1.18. Hold Position.mrsg
{message:HoldPosition; I

C.1.19. Impact.mnsg
{message:Impact;)

C.1.20. LoseTrack.mnsg
{import message {TrackEvent} I
{message:LoseTcack (TrackEvent);I

C.1.21. MoveFormation.mnsg
{import message {AdjuatFormation} I
{message:Movetormation (AdjustFormation);)

C.1.22. MoveTo.msg
{import apt {sptDefs} I

message :MoveTo
I / message:MoveTo
spt::vertex:pos(O.O, 3);
spt::vertex:ori(O.O, 3);

method:fix~ri(protected; apt: :vertex; apt: :vertex:o;)
// method:fixori(protected; spt::vertex; spt::vertex:o;)

for (ulong i=O; iK3; ++i) IILoop over the axes

o[i] = fmod(o[i], PI*2.0); 1/Adjust angular pos
if (o[iI<0.0) o[i]+=PI*2.0; IIMake certain it's > 0

// for (i=0; i<3; ++i)
return 0; IIReturn the adjusted orientation array

// method:fixori(protected; apt: :vertex; apt: :vertex:o;)

method:setPos(public; void; spt::vertex:v;) I p05 v;}
method:setPos (public; void; doubie:x; double:y; double:z;)
{ pos[0]=x; pos[l]=y; pos[2]=z; }
method:setPos(public; void; double:x; double:y;)
{ pos[0]=x; posll=y; pos[2)=0.0; }

method:setOri(pubiic; void; spt::vertex:v;) { ori fixori(v);
method:setOri(public; void; double:x; douhle:y; double:z;)
{ori[0]=x; ori[l)=y; ori[2]=z; oni=fix~ri(oni);I

method:set~public; void; spt::vertex:p; apt: :vertex:o;)
{pos=p; ori=fix~ri(o); I

method:getPos~public; spt::vertex;) {return pos;
method:getOri(public; spt::vertex;) {return oni;

I 1/ message:moveTo

343

C.1 .23. MovementCompletenmsg
{message:MovementComplete;)

C.1 .24. Munition.proc
{import process {NewtonianMotion} I
{import message {Fire, Impact, SetNewtonianMotion, Explosion,

StartSimulation, SetEnvironment, Hit, AddShape3D}
(import {<math.h>)I

process :Munition (NewtonianMotion)
// process:munition(NewtonianMotion)

process:environment; 1/Environment in which the munition exists
process :parent; // Parent process
process:grNode; IIGraphics node for display purposes

method:getlmpactTime(puhlic; douhle; douhle:v; douhle:a;)
{ // method:getlmpactTime(puhlic; douhle; douhle:v; double:a;)

return -2.0*v/a; // Return the value to the calling routine
// method:getlmpactTime(puhlic; double; douhle:v; douhle:a;)

mode: Default
1mode:Default

node:start [StartSimulation:in] C]
// node:start [StartSimulation:in] []

fired.setActive(false); // Turn the "fired" mode off
1/node: start [StartSimulation: in] []

/mode:Default

mode :waiting
I/ mode:waiting

node: setEnvironment [SetEnvironment: in] []
// node:setEnvironment[SetEnvironment:in] []

environment = in.getEnvironmenito; // Environment in which this exists
grNode = in.getNodeo1; 1/Graphics node displaying the munition
parent = in.getSource)); // Save the parent process handle

/1node: setEnvironment [SetEnvironment: in] []

node:fire[Fire:f] IIRequest to fire the munition
[Impact:imp=>(me;), // Schedule the impact
AddShape3D:as=>(grNode;), IIStart rendering the munition
SetNewtonianMotion:out[]] // Set motion parameters

// node: fire [Fire: f] [Tmpact,AddShape3DSet~ewtonianMotion]
spt::vertex v(0.0, 3), a(0.0, 3), p(f.pos);
v[C] = f.muzzle -velocity*cos(f.elevation)cos(f.azimuth)+f.vel[0];
v~l] = f.muzzle -velocity*cos(f.elevation)*sin~f.azimuth)+f.vel[l];
v[21] f.muzzle -velocity*sin(f.elevation)+f.vel[2];
a[01 = a~l] = 0.0;
a[2] = -0.9; 1/Acceleration due to gravity

imp.setTime(getTimeo)+getlmpactTime(v[2] ,-9.8)); // Impact time
nm.setLM(p, v, a, getTimeo, irp.getTimeofl; // Set motion parameters

notifycout); /1Inform interested parties shout this
waiting.setActive(false); //We're no longer waiting
fired.setActive~true); // We are now firing

as.add(me); IIAdd this process as a subordinate to the rendering node
/node:fire[Fire:f] [Impact,AddShape3DSetNewtonianMotion]

Imode:waiting

mode: fired
1mode:fired

node:impact[Impact:in] //We impacted the environment
[Explosion:explode[], //An explosion occurred
SetNewtonian~otion:out[]] // Stop motion

Inode:impact[Impact:in] [Explosion:explode]
double t = getTimeo; IIGet the time of the impact
spt::vertex p(nm.lp(t)); //Get current position

344

nm.lv(0.0, 0.0, 0.0, t);I Set to stop at current position
nm.ia(0.0, 0.0, 0.0, t); IISet to stop at current position
notify~out); //Inform interested parties about this

std::map<process, gvm::object_index>: :itarator i; // For loop index
for (i=views.begino; i!=views.end(); ++i) //Loop over index map

explode.push -back(me); //Allocate a new message
explode.back().addDest(i->first); IIAdd this view as a destination
explode.back().index = i->second; // Specify the index
explode.backo).set(p); IIspecify the position

// for (i=views.hegino; i!=views.endo; ++i)

explode.push back(me); IIAllocate a new message
explode.back().addDest(environment); /1Add environ as dest
explode.back().set(p); IISpecify the position

// node:impact[Impact:in] EExplosion:explode]

node:hit[Hit:in] [Hit:out=> (parent;)] // Notify parent what we hit
/node:hit[Nit:in] [Hit:out=>(parent;)]

out.track = in.track; /1Set the target data
fired.setActive(false); IINo more adventures

Inode:hit[Nit:in] [Hit:out=>(parent;)]
// mode:fired

Iprocess :Nunition (Newtonian~otion)

C.1 .25. Newtonian Motion. proc
{import process {Shape3o}
{import message {SetNewtonian~otion, SetLinearPosition, SetLinearVelocity,

SetLinearAcceleration, SetAngularPosition, SetAngularVelocity.
SetAngularAcceleration, AddView)

{import {<math.h>}
{import std {<valarray>}
{import spt {sptNewtonianMotion, sptLinear~otion, sptAngular~otion}

process :Newtonian~otion (Shape3D)
II process :Newtonian~otion (Shape3D)

spt::Newtonian~otion:nm; // Parameters of Newtonian Notion

method:notify~puhlic; void; std: :vector<SetNewtonian~otion>&:out;)
// method:notify(public; void; std: :vector<SetNewtonian~otion>&:out;)

std::map<process, gvm::object index>::iterator i; // For loop index
for (i-views.begino; i!=views.end(); ++i) 1/Loop over index map

out.push_back(me); 1/Allocate a new message
out.back().addDest(i->first); IIAdd this view as a destination
out.back().index = i->second; // Specify the index
out.back(Vset(nm); IISpecify the Linear Notion pacamters

I // for (i=views.begino; i!=views.endo; ±+i)
// method:notify(public; void; std: :vector<SetNewtonian~otion>&:out;)

mode: Default
Imode:Default

node: addView [AddView: in]
[SetNewtonian~otion: snm-> (in. getSource C);)]

{ II Node:addView[AddView:in][...]

snm. set (nm) ; /1Set the motion parameters
snmn.index =in.index; // Get the index

IINode:addView[AddView:in] [...]

node: setLinearPosition [SetLinearPosition: in]
[SetNewtonian~otion: out []]

Inode:setLinearPosition[SetLinearPosition:inl [...
nm.lp~in.getC), getTimeC)); IICopy the linear position contents
notify(out) ; // Notify the views, at al

// node:setLinearPosition[SetLinearPosition:in] [. ..

node: setLinearVelocity [SetLinearVelocity: in]

345

[SetNewtonian~otion: out)]]
Inode:setLinearVelocity[SetLinearVelocity:in] [.. .

nm.lv(in.get)), getTime))); //Copy the linear velocity contents
notify(out) ; // Notify the views, at al

// node:setLinearVelocity[SetLinearVelocity:in] E .. .

node: setLinearAcceleration [SetLinearAcceleration:in]
[SetNewtonianMotion: out []]

Inode:setLinearAcceleration[SetLinearAcceleration:in] [. ..

nmfla(in.geto, getTimeW); //Copy the linear acceleration contents
notifycout) ; // Notify the views, et al

// node:setLinearAcceleration[SetLinearAcceleration:in] [..

node: setAngularPosition [SetAngularPosition: in]
[SetNewtonian~otion: out []]

Inode:setAngularPosition[SetAngularPosition:in][[.
nm.ap~in.get)), getTimefl); 1/Copy the angular position contents
notify~out) ; // Notify the views, at al

// node:setAngularPosition[SetAngularPosition:in] [.

node: setAngularVelocity [SetAngularVelocity: in]
[SetNewtonian~otion: out []

/node:setAngularVelocity[SetAngularVelocity:in[..
nm.av(in.geto, getTime))); IICopy the angular velocity contents
notify~out) ; // Notify the views, at al

// node:setAngularVelocity[SetAngularVelocity:i] [...

node: setAngularAcceleration [SetAngularAcceleration: in]
[SetNewtonian~otion: out)]]

Inode:setAngularAcceleration[SetAngularAcceleration:in] [..
nm.aa~in.get)), getTimeofl; IICopy the angular acceleration contents
notify~out); // Notify the views, at al

// node:setAngularAcceleration[SetAngularAcceleration:in] E..

node: setNewtonian~otion [SetNewtonian~otion :in]
[SetNewtonian~otion: OutH]]

Inode:setNewtonian~otion[SetNewtonian~otion:in][..
nm = in.get)); IICopy the newtonian motion parameters
notifycout); // Generate notification messages

Inode:setAngularAcceleration[SetAngularAcceleration:in][[.
// mode:Default

//process :Newtonian~otion)Shape3D)

C.1 .26. Platoon.proc
{import process {Tank}
{import message {AddShapetD, SetFormation, StartSimulation, Destroyed,

SetLinearPosition, SetAngularPosition, UnitSetup,
NoveFormation, NovementComplete, NoveTo, UnitSetup,
AddTrack, ChangeTrack, LoseTrack, SetNewtonian~otion) I

{import spt {sptEnvironmentobject}
{import std {<valarray>}
{import {<math.h>}

process :Platoon
II process:Platoon

Tank:tanks [5]; //The tanks in the platoon
bool:active[5] (true); IIWhich of the tanks are still alive
bool:complete[5] (true); /1Phase complete flags for each tank
process:environment; /1Environment in which the simulation occurs
process :parent; IIParent unit (company]
spt: :vertex:pos (3); // Current position
spt: :vertex:ori)3) ; //Current orientation
spt: :vertex:destPos)3); /1Destination position
spt: :vertex:destOri)3) ; /1Destination orientation
double:destLeft; IIDestination line of left flank
double:destRight; /1Destination line of right flank
double:startTime)-l.0); IITime we start moving
double:left (0.0); IILeft flank line

346

double:right (0.0); /1Right flank line
ulong:trackCount[]; 1/Number of members tracking track
spt::NewtonianMotion:tracks[]; // List of ali known tracks
ulong:force (UNKNOWN); 1/Which force is this platoon a member of

method:init (public; void;)
// method:init~public; void;)

turn to dest.setActive(false); // Turning to the destination
move to dest.setActive(false); IIWe're not moving to destination yet
turn to heading.setActive(false); //Not turning to final heading yet

// method:init~public; void;)

method:phaseoone(public; bool; process:p;)
// method:phaseoone(public; bool; process:p;)

bool done=true; // Are we done yet?
for (uint i=0; i'(tanks.size)); ++i) //Loop over the tanks

if (p==tanks[i]) complete[i]=true; IIIs this the one?
done &= (complete[i] 11 !active[i]); IIAre we done yet

// for (uint i=0; i<tanks.sizeo; ±+i)
return done; 1/Return the value to the calling routine

Imethod:phaseoone~public; bool; process:p;)

method:getOrientation(protected; spt::vertex; spt::vertex:d0;) // Dest oni
Imethod:getOrientation

double theta = atan2(dO[1], dOEC]); // Get the angle
spt::vertex rv(0.0, 3); IIResulting orientation

rv[2] = theta; // Direction to look
return rv; /1Return the orientation

Imethod:getorientation

method:getoosition~protected; spt: :vertex;
spt::vertex:dP; IIDestination position
spt::vertex:dO; IIDestination orientation
double:l; IIFormation left leg
double:r; IIFormation right leg
ulong:i;) 1/Index

Imethod:getPosition
double c = ((double) i)-((double) (tanks.size))-l))/2.0; // Rel. location
double h = norm(dO) ; //Get orientation magnitude
double theta = atan2(dO[1], dO[0]); // Get the angle
double act=0; //Abreast factor in x
double ast=0; //Abreast factor in y
spt::vertex rv)0.0, 3); IIResize positions

double leg = 0.5*PI+(c>0 ? -1 : r); // Direction
act=(c==0 ? 0.0 h*cos(theta+leg)); IIV leg factor in x
ast=(c==0 ? 0.0 h*sin(theta+leg)); 1/V leg factor in y

rv[D]=dP[0) +c*act; IISet the position
rv[l]=dP[l] ±c*ast;

return rv; IIReturn the position to the calling routine
1method:getoosition

mode: startup
Imode:startup

node:unitSetup[UnitSetup:in] IISetting the environment
[UnitSetup:se=>)tanks;), // Establish environment
AddShape3o:out=>(in.getNode));) // Add tanks to node

{ I// node:setEnvironment[UnitSetup:inl [SetEnvironment:se. .. I1
environment =se.environment =in.environment; IISet the environment
force =in.getForce)); // This is our force
parent =in.getSource)); /1Set the parent process
se.set~force,in.getRadius)),environment,in.getNode))); // Setup tanks
for)uint i=0; i<tanks.size)); ++i) IILoop over all of the tanks
out.add~tanks[i]); IIAdd each one to the scene

startup.setActive~false) ;

Inode:setEnvironment[UnitSetup:inl [SetEnvironment:se ...

347

mode run

node:setFormation[SetFormation:in] I Orders from above
[SetLinearPosition:slp[5]=>(tanks[@] ;), /1Set tank pos
SetAngularPosition:sap[5]=>(tanks[@] ;)] /1orient tanks

// node:setFormation[SetFormation:in] [.. I
left = in.getLeftLo; // Get formation left flank
right = in.getRightoj; /1Get formation right flank
pos = in.getoo; //This is now the current position
oni = in.getOri(); /1This is now the current orientation

for (uint i=0; i<tanks.sizeo; +i+i) /1Loop over the tanks

slp[i] .set(getPosition(pos, oni, left, right, i)); IIGet position
sap~i] .set(getOrientation(ori)); // Get the orientation

// for (uint i=0; i<tanks.size(); +±i)
Inode:setFormation[SetFormation:in]f ..t

node:moveFormation[MoveFormation:in] // Request to move the formation
[MoveTo:out[5]=>(tanks[@];)] /Move the tanks
// node:moveFormation[MoveFormation:in] [MoveTo:out[5]]

destLeft = in.getLeft(); 1/Destination formation left flank
destRight = in.getRighto; 1/Destination formation left flank
destOri = in.getOrio; /1Destination orientation
dest~os = in.getPoso; // Destination position
if (startTime>0) pos += 40.0*(getTirne()startTime)*ori; // If moving
spt::vertex rp = destPos-pos; // Relative position

startTime =-1; W1 e are not moving any more
double theta atan2(rp[l], rp[0]); IIRelative bearing to destination
double dist norm(ori);I Distance between adjacent units

ori[0] = dist*cos (theta); IImodify the orientation
ori~l] = dist*sin(theta);
ori[21 = 0.0;

for (uint i=0; i<tanks.size(); ++i) IILoop over the tanks

out[i] .setoos(getoosition(pos, oni, left, right, i));
out[i] .setOri(getOrientation(ori));

} // for Cuint i0O; i<tanks.sizeo; ++i)

turn to dest.setActive(true); // Turning to the destination
move to dest.setActive(false); WI e're not moving to destination yet
turn-to-heading.setActive(false); // Mot turning to final heading yet

for (uint i=0; i<complete.sizeo; ++i) completeti]=false;
// node:moveFormation[MoveFormation:in] [MoveTo:out[5]]

node: setNewtonianMotion [Set~ewtonianMotion :in]
[Set~ewtonianMotion:out=> (parent;)]

Inode: set~ewtonianMotion] Set~ewtonianMotion] [Set~ewtonianMotion]
out.set(in-nm); // Set the newtonian motion paramters of output message
out.index = in.index; // Set the index value, too

if (tracks.size() <= in.index) IIIf we need to increase storage

tracks.resize(in.index+l); IIResize the track array
trackCount.resize(in.index~l, 0); // Resize the counter

// if (tracks.size() <= in.index)
tracks[in.index] = in.nm; // Save the motion paramter

// node: set~ewtonianMotion] Set~ewtonianMotion] [Set~ewtonianMotion]

node:addTrack[AddTrack:in] [AddTrack:out=>(parent;)]
// node:addTrack[AddTrack:in] [AddTrack:out]

if (tracks.size() <= in.getTracko) IIIf we need to increase storage

tracks.resize(in.getTracko+l); IIResize the track array
trackCount.resize(in.getTracko+l, 0); IIResize the counter

348

I // if (tracks.size() <= in.getTracko)

if (trackCount[in.getTrack)(]++>O) // If this is not a new track
out.setTX(false); //Don't bother informing parent

else /1If the track is new

tracks[in.getTracko] = in.get~otiono; //Save the motion paramter
out.set~otion(in.get~otiono(); /1Notify as to object motion
out.set(in.getTrack(), in.getForce(); /7 / Provide force tracking

Ielse from if (trackCount[in.getTracko]>l)
// node:addTrack[AddTrack:in] [AddTrack:out]

node:changeTrack[ChangeTrack:in] [ChangeTrack:out=>(parent;)]
// node:changeTrack[ChangeTrack:in] [ChangeTrack:out]

ulong t = in.getTracko; // Get the track index

if (in.get~otion().getStartTime()==tracks[t] .getStartTimeo)) // Known?
out.setTX(false); IIWe already informed the parent

else IIIf this is a new update

tracks[t] =in.get~otiono; IISave the motion paramter
out.set~otion(in.get~otion()); /1Notify as to object motion
out.set(t,in.getForceo); /1Provide force tracking

Ielse from if (in.get~otion().getStartTime =

Inode:changeTrack[ChangeTrack:in] [ChangeTrack:out]

node:loseTrack[LoseTrack:in] [LoseTrack:out=> (parent;)]
// node:loseTrack[LoseTrack:in] [LoseTrack:out]

if (--trackCount[in.getTrack()]>O) // If there are tracks remaining
out.setTX(false); // Don't notify parent that track is lost

else // If this was the last one observing the track
out.set(in.getTrack(),in.getForce)(); // Provide force info

/node:loseTrack[LoseTrack:in] [LoseTrack:out]

node:destroyed [Destroyed:in]
[Destroyed:out[]=> (parent;)]

1node:destroyed[Destroyed:in] [Destroyed:out[1]
bool a = false; //Accumulator for testing state of platoon

out.push back(me); IIInform the company of the tank loss
out.back().index = in.index; IITell company which one it was

for (ulong i=O; i<tanks.sizeo; ±+i) 1/Loop over tanks in platoon

if (tanks[i]==in.getSource()) //If the ith tank just got destroyed

active[i]=false; 1/This is no longer part of the platoon

a = a 11 active[i]; IIAccumulate to see if we're still alive
} II for (i=O; i<tanks.size(); ++i)

if (!a) //If the platoon is destroyed

out.push -back (me); /1Inform company if platoon destroyed
run.setActive(false); //This platoon is no longer active
turn to dest.setActive(false); // Turning to the destination
move to dest.setActive(false); IIWe're not moving to destination yet
turn-to-heading.setActive(false); // Not turning to final heading yet

1node:destroyed[Destroyed:in] [Destroyed:out[]]
Imode:startup

mode:turn-to-dest
{ /1 mode:turn-to-dest

node:movementComplete[MovementComplete:in] // One is done
[NoveTo:out[5]=>(tanks[@];)] // Next movement phase

Inode:movementComplete[NovementComplete:in] [NoveTo[5] :out]
if (phaseDone(in.getSourceo)) If we can go to the next phase

for (uint i=O; i<out.sizeo; ++i) /1Loop over the output messages

349

out[i].setPos(getPosition(destPos, ori, destLeft, destRight, i));
out[i].setOri(getOrientation(ori));
complete[i]=false; // Not done with next phase

// for (int i=0; i<out.size(); ++i)
turn to dest.setActive(false); // No longer turning to destination
move to dest.setActive(true); // Start moving to destination
turn to heading.setActive(false); // Not turning to final heading
startTime = getTimeo; // Get the current time

// if (phaseDone(in.getSource0)
else // if we're not yet done turing to final heading

for (uint i=0; i<out.size(); ++i) out[i].setTX(false); // Don't send
II node:movementComplete[MovementComplete:in] [MoveTo[5]=>(tanks[@];)]

// mode:turntodest

mode:move to dest
// mode:move-to dest

node:movementComplete[MovementComplete:in] // One is done
[MoveTo:out[5]=>(tanks[@];)] // Next movement phase

// node:movementComplete[MovementComplete:in] [MoveTo[5]:out]
if (phaseDone(in.getSource())) // If we can go to the next phase

pos = destPos; // We're at our final dest
startTime = -1; // Not moving any more
left = destLeft; // We are now in the final formation
right = destRight; // We are now in the final formation
for (uint i=0; i<out.size0; ++i) I/ Loop over the output messages

out[i].setPos(getPosition(pos, destOri, left, right, i));
out[i].setOri(getOrientation(destOri));
complete[i]=false; // Not done with next phase

// for (int i=0; i<out.size(; ++i)
turn to dest.setActive(false); // No longer turning to destination
move to dest.setActive(false); // Not moving to destination
turn to heading.setActive(true); // Start turning to final heading

}/ if (phaseDone(in.getSourceo)
else II if we're not yet done turing to final heading

for (uint i=0; i<out.size(); ++i) out[i].setTX(false); // Don't send
// node:movementComplete[MovementComplete:in] [MoveTo[5]=>(tanks[@];)]

// mode:move-to-dest

mode:turn-to-heading
{/ mode:turn to heading

node:movementComplete[MovementComplete:in] // One is done
[MovementComplete:out=>(parent;)] // All done

f I node:movementComplete[MovementComplete:in][MovementComplete:out]
if (phaseDone(in.getSourceo()) I If we can go to the next phase

ori = destOri; // We're at our destination orientation
startTime = -1.0; // Get the current time
turn to dest.setActive(false); // No longer turning to destination
move to dest.setActive(false); // Not moving to destination
turn to heading.setActive(false); // Not turning to final heading
for (uint i=0; i<complete.size(); ++i) complete[i]=false;

// if (phaseDone(in.getSourceo)
else // if we're not yet done turing to final heading
out.setTX(false); // Don't send the final confirmation
} I node:movementComplete[MovementComplete:in] [MoveTo[5]=>(tanks[@];)]

// mode:turn to-heading
// process:Platoon

C.1.27. RedCompany.proc
{import process {Company) I
{import message {StartSimulation, SetColor, SetFormation, SetLinearPosition,

MoveFormation, UnitSetup) I
{import spt {sptEnvironmentObject) I
{import gvm {gvmTank) I

process:RedCompany(Company)

350

1/process: RedCompany (Company)
method:init~public; void;)

Imethod:init~public; void;)
Company::init)); /1Initialize the parent construct first
view->setTitle ("Red Tactical View") ; // Red view
force = RED; IIThis has force designator "RED"
view->setPosition(1032,27); IISet the position of the window
view->setSize (563, 516); // Set the size

Imethod:init~public; void;)

mode: startup
Imode:startup

node:start[StartSimulation:in] IIUpon startup
[SetColor:sc=>(platoons; cp;), // Set the color of the objects
SetFormation:sf[]=>)platoons[@];), IISet formation params
SetLinear~osition:slp=>)cp;), 1/Command post position
MoveFormation:mf[H=>(platoons[@];):)10.0@*.0)I

// node:start[StartSimulation:in] [.. I
sc.set~l.0, 0.0, 0.0, 1.0); 1/Set the color of subordinates to red
double r = sqrt(5000.0); // Range between tanks
double d =sqrt(2000000.0); IIRange between destinations
for)uint i=0; i<platoons.size)); ++i) 1/Loop over the platoons

double x = -8500-r*((double) i); IILocation
sf.push back~me); //Add a new message
sf[i].setPos~x,x); IISet the tank position
sf[i] .setOri~r,r); 1/Set the platoon orientation & spacing
sf[i].setForm(VFORMATION); // Use V formation

x=d*)))double) i)-))double))platoons.size))-l))/2.0); // Dest loc
mf.push back (me); // Add a new message
mf[i] .setPos~x, -x); 1/Set the destination
mf[i].setori~r,r); 1/Set the orientation
mf[i].setForm)VFORMATION); 1/Use the V formation

} // for)uint i=0; i<platoons.size)); ++i)
slp.set)-9500.0, -9500.0, 0.0); //Set the position of the command post

1node:start)StartSimulation:in] [..]
// mode:startup

IIprocess: RedCompany (Company)

C. 1.28. Reg isterEnvironmentObject. msg
{import apt {sptNewtonianMotion, sptLinearMotion, sptAngularMotion}

message :RegisterEnvironmentObject
Imessage:RegisterEnvironmentObject

double: r; // Effective radius of the sensor
ulong:f; // which force does track belong to NEUTRAL (0), RED (1), BLUE (2)
spt::NewtonianMotion:motion; // Notion paramters

method:setRadius~public; void; double:R;) f r=R; I // Set the sensor radius
method:setForce~public; void; ulong:F;) { f = F; I // Set the force value
method:get~otion~public; spt::Newtonian~otion;) f return motion;}

method:getForce~public; ulong;) I return f; I // Return the force index
method:getRadius (public; double;) { return r; I // Return the sensor radius
method:set~otion~public; void; spt::NewtonianMotion&:m;) I motion=m;I

1message:RegisterEnvironmentObject

C.1 .29. ScheduleAddTrack.mg

{import message)ScheduleTrackEvent} I
{message :ScheduleAddTrack)ScheduleTrackEvent) ;

351

C.1 .30. ScheduleLoseTrack.msg
{import message fScheduleTrackEvent)

(mnessage: ScheduleLoseTrack (ScheduleTrackEvent);I

C.1 .31. ScheduleTrackEventmsg

message: ScheduleTrackEvent

ulong: sensor;
ulong: track;
method:set(public; void; ulong:s; ulong:t;) { sensor=s; track~t;I
method:getSensor(public; ulong;) I return sensor;I
method:getTrack(public; ulong;) { return track;I

C.1 .32. SensorTrack.proc
{import process {Newtonian~otion)
{import message {AddTrack, ChangeTrack, LoseTrack, AddEnvironment,

SetEnvironment, SetNewtonian~otion, Impact, Destroyed)
(import apt {sptEnvironmentObject, sptNewtonian~otion)
{import std {<vector>} I

process: SensorTrack (Newtonian~otion)
fI process: SensorTrack (Newtonian~otion)

ulong:envlndex((ulong) (-1)); /1Index within the environment
process: environment; // Environment process
process:parent; /1Parent object to report back to
double:radius(2000.O) ; // Sensor Radius
ulong:force (NEUTRAL); /1Initially neutral, until we know better
spt::Newtonian~otion:tracks[]; IICollection of known tracks
std::set<ulong>:active; IICollection of active tracks

method:isActive~public; bool; ulong:i;) 1/Is track i active?
{return active.find(i) !=active.endo;I

method:notify(public; void; std: :vector<SetNewtonian~otion>&:out;)
// method:notify~public; void; std: :vector<SetNewtonian~otion>&:out;)

Newtonian~otion: :notify(out); // Call the parent version
if (envlndex !=((ulong) -1)) IIIf we have registered with environment

out.pushback~me); IIAllocate a new message
out.backo).addDest~environment); //Add environment as dest
out.back)).addDest(parent); 1/Add environment as dest
out.back().indax =envlndex; // Specify the index
out.backo.set(nm); IISpecify the Linear Notion paramters

// if (envlndex !=((ulong) -1))
Imethod:notify(public; void; std: :vector<SetNewtonian~otion>&:out;)

mode: Default
Imode:Default

node: addEnvironment [AddEnvironment: in]
[SetNewtonian~otion: out=> (parent;)]

// Node:addEnvironment[AddEnvironment:in][...]
envlndex = in.index; IIsave the environment index
out.index = envlndex; 1/Notify parent of new index
out.set(nm) ; IIset the motion parameters

} I// Node:addEnvironment[AddEnvironment:in][...]

node: setEnvironment (SetEnvironment :in] (1
// node: setEnvironment [SetEnvironmnent: in] [1

environment = in.environment; /1Environment in which this exists
parent = in.getSourceo; // Save the parent process handle

I // node:setEnvironment[SetEnvironment-in] (1

node:addTrack[AddTrack:in] [AddTrack:out=> (parent;)]
1node:addTrack[AddTrack:in] [AddTrack:out]

352

if (tracks.size() <= ini.getTrack()) /1If tracks isn't big enough
tracks.resize(in.getTracko+l); // Resize the track list

tracks [in.getTracko)] in.getMotionWo; //Save the motion paramter
active.insert(in.getTrack()); // Add an active element
out.setMotion(in.get~otiono); IINotify as to object motion
out.set(in.getTrack(), in.getForceo); //I Provide force tracking

// node:addTrack[AddTrack:in] [AddTrack:out]

node:changeTrack[ChangeTrack:in] [ChangeTrack:out=> (parent;)]
// node:changeTrack[ChangeTrack:in] [ChangeTrack:outI

tracks[in.getTracko'] = in.get~otion)); // Save the motion paramter
out.set~otion~in.get~otion()); //Notify as to object motion
out.set~in.getTrack(), in.getForceo)); // Provide force tracking

// node:changeTrack[ChangeTrack:in] [ChangeTrack:outI

node:loseTrack[LoseTrack:in] [LoseTrack:out=>(parent;)]
I // node:loseTrack[LoseTrack:in] [LoseTrack:out]

active.erase(in.getTracko); IITrack is no longer active
out.set(in.getTrack(),in.getForceo)); //Provide force information

// node:loseTrack[LoseTrack:in] [LoseTrack:out]

node: impact [Impact: in] // we've been hit
[Destroyed:out[], //Notify processes of our destruction
LoseTrack:lt[]=>(parent;), // Lost all the tracks
SetNewtonian~otion:snm[]] //Notify of new newtonian motion

{ I// node:impact[Impact:in] [Destroyed:out[]]
nm.la(0.0, 0.0, 0.0, getTimeofl; IIStop linear acceleration
nm.lv(0.0, 0.0, 0.0, getTime))); // Stop linear motion
nm.aa(0.0, 0.0, 0.0, getTime))); IIStop angular acceleration
nm.av)0.0, 0.0, 0.0, getTime))); // Stop angular motion
notify(snm); // Notify views/environments about new newtonian motion

std::map<process, gvm::object_index>::iterator i; // For loop index
for (i=views.begin)); i!=views.end)); ++i) IILoop over index map

out.push -back(me); IIAllocate a new message
out.back)).addDest~i->first); IIAdd this view as a destination
out.back)).index = i->second; // Specify the index

Ifor (i=views.begino; i!=views.endo; ++i)

if (envlndex != ((ulong) -1)) // If we have registered with environment

out.push back~me); IIAllocate a new message
out.backoLaddDest~environment); I Add environment as dest
out.backoYaddDest~parent); //Add environment as dest
out.back().index = envlndex; //Specify the index

} Iif (envlndex !=((ulong) -1))

std::set<ulong>::iterator t; // Index for active tracks
for (t=active.begin)); t!=active.end)); ++t) // Loop over active tracks

lt.pushback~me); IICreate a new LoseTrack message
lt.backo.set(*t, (force==RED ? BLUE :RED)); // tell of lost tracks

/for (t=active.begin)); t!=active.endo; ±±t)
} /1 node:impact[Impact:in] [Destroyed:out[]]

// mode:Default
Iprocess :SensorTrack (Newtonian~otion)

C. 1.33. SetAngularAcceleration.mg
[import message {Set~otion}
(message: SetAngularAcceleration()Set~otion);)

C.1 .34. SetAngularPosition.msg
(import message {Set~otion}
{message:SetAngularPosition(Set~otion) ;

353

C.1 .35. SetAngularVelocity.msg
{import message {SetMotion)I

{message:SetAngularVelocity(SetMotion);

C.1 .36. SetEnvironmentmsg

message: SetEnvironment
Imessage:SetEnvironment

process:environment; 1/Reference to the environment process
process:renderNode; // Root node in the scene graph

method:settnvironment~public; void; process:e;) I environment=e; I
method:setNode(public; void; process:n;) I renderNode=n;I

method:gettnvironment~puhlic; process;) I return environment;I
method:getl'ode(public; process;) f return render~ode;I

I/ message:SetEnvironment

C.1 .37. SetFormation.mg
{import message {AdjustFormation}
{message :SetFormation (AdjustFormation);

C.1 .38. SetLinearAcceleration.msg
{import message {SetMotion}
{message :SetLinearAcceleration (SetMotion)I

C.1 .39. SetLinearPosition.msg
{import message {SetMotion}
{message:SetLinearPosition (SetMotion);

C.1 .40. SetLinearVelocity.msg
{import message {SetMotion}
{message:SetLinearVelocity(Setmotion);

C.1.41. SetMotion.mg
{import message {SetValue}
{import spt {sptDefs}

mesg:StIin(e~le
{ II message:Setotion(Setaalue

double:t(getTimeo); IIEffective time of the motion paramters
spt::vertex:v(O.0, 3); // where the vector is stored

method:set(puhlic; void; douhle:x; douhle:y; double:z;)
fv[0]=x; v[l]=y; v[2]=z;I

method:set(public; void; spt::vertex:V;) I v V;
method:setT(public; void; double:T;) { t = T; I I Set the time
method:get(public; spt::vertex;) I return v; I IGet value
method:get(public; double; ulong:i;) I return (i<v.size() ? v[i] : 0.0);1
method:getT~public; double;) f return t; I // Get the time

II message: SetMotion (SetValue)

C.1 .42. SetNewtonianMotion.msg
{import message {SetValuej)
{import apt {sptNewtonianMotion, sptLinearMotion, sptAngularMotion}

message: SetNewtonianMotion (SetValue)

354

/message:SetNewtonianMotion(SetValue)
spt::NewtonianMotion: nm; // motion paramters

mnethod:set(public; void; spt::NewtonianMotion&:n;) f nm--n;
method:get~public; spt::NewtonianMotion;) I return nm;)

/message:SetLinearVelocity(SetValue)

C.1 .43. SetfankState.msg
{import message {SetValuej

message:SetTankState (SetValue)
f1 message: SetTankState (SetValue)

double:az (0.0); // Gun azimuth
double:el(0.0) ; IIGun elevation
double:azRate (0.0); IIAzimuth slew rate
double:elRate (0.0); /1Elevation slew rate
double:azStart(0.0); /1Azimuth slew start time
double:elStart(0.0); /1Elevation slew start time
double:azStop(0.0) ; // Azimuth slew start time
double:elStop(0.0); IIElevation slew start time

method:setAzimuth~public; void; double:a; double:r; double:s0; double:sl;)
Iaz~a; azRater; azStart=s0; azStop=s1; I

method:setElevation~public; void; double:e; double:r; double:s0;
double: si;

el=e; elRate=r; elStart=s0; elStop=sl;I

method:getAzimuth~public; double;) { return az;
method:getAzimnuthRate~public; double;) f return azRate;
method:getAzimuthStart~public; double;) f return azStart;
method:getAzimuthStop~public; double;) f return azStop;
method:getElevation~public; double;) f return el;I
method:getElevationRate~public; double;) {return elRate;.)
method:getElevationStart~public; double;) f return elStart;
method:getElevationStop~public; double;) {return elStop;I

Imessage:SetTankState (SetValue)

C.1.44. Stop.msg
fmes sage :Stop ;

C.1 .45. StopAzimuthSlew.mg
{import message {StopSlew}
{message :StopAzimuthSlew;j

C.1 .46. StopElevationSlew.msg
{import message {StopSlewj}
{message :StopElevationSlew; I

C.1 .47. StopSlew.mg
{message:StopSlew;j

C.1.48. Tank.proc
{import process {Vehicle, Munition)
{import message {SetTankState, AddView, UnitSetup, RegisterEnvironmentObject,

SetEnvironment, AddTrack, ChangeTrack, LoseTrack, SetColor,
Fire, Attack, StopAzimuthSlew, StopElevationSlew, Hit,
Impactj}

{import apt { sptEnvironmentObj act, sptNewtonianMotion, sptLinearMotion,
sptAngularMotion}

{import std {<map>, <queue>}
{import I<math.h>}

355

process :Tank (Vehicle)
/1process :Tank (Vehicle)

Munition:rounds[50]; 1/We have fifty of them we can fire off
double: az~axRate (PT /4.0); // Azimuth slew rate
double:el~axRate(PI/8.0); 1/Elevation slew rate
ulong:round(0); // Next round to use
double:mv(5000.0); 1/Set muzzle velocity to 5000 rn/s

double:az (0.0); IIGun azimuth
double:el(0.0) ; IIGun elevation
double:azRate(0.0) ; IIAzimuth slew rate
double:elRate (0.0); /1Elevation slew rate
double:azStart(0.0); IIAzimuth slew start time
double:elStart(0.0); /1Elevation slew start time
double:azStop(2.0*Clock: :getEndTime))); // Azimuth slew stop time
double:elStop(2.0*Clock: :getEndTime))); 1/Elevation slew stop time
std: :queue<ulong>:targets; 1/Targets to shoot

method:init~public; void;)
Imethod:init(public; void;)

maxVel = 40.0; IISet maximum velocity to 40 m/s
maxRot = 0.5*PI; IISet max rotation angle to PI/2
Vehicle::imit (); // Call parent version
attack.setActive~false); IINothing to attack right now

1/method:init (public; void;)

method:setGunPos(public; void; double:a; double:e;) f az=a; el=e;I

1method:angle returns the radian angle value of t in the range {-PI, PI]
method:angle(public; double; double:t;)

// method:angle~public; double; double:t;)
t =fmod~t, 2.0*PI); IIGet in range [0,2*PT) or (-2*PI, 0]

if (t<=-PI) t+=2.0*PT; 1/Get in range (-2*PI, PI)
else if (t>=PT) t-~=2.0*PI; 1/Get in range (-PI, PI]
return t; // Return the value

// method:angle(public; double; double:t;)

/method:bearing returns the radian angle value of t in the range [0, 2.0*PT)
method:bearing (public; double; double: t;)

// method:bearing(public; double; double:t;)
t = fmod~t, 2.0*PI); if (t<0.0) t+=2.0*PT; IIGet in range [0, 2*PI)
return t; // Return the value

// mathod:bearing(public; double; double:t;)

method:getAzimuth~public; double; double:t;) // Effective time of azimuth
// method:getAzimuth~public; void; double:t;)

double dt = min~azStop, t)-azStart; // Get the elapsed time
return angle (az+azRate*dt); IIGet the current bearing

// method:getAzimuth(public; void; double:t;)

method:getElevation~public; double; double:t;) // Effective elevation time
// method:getElevation(public; void; double:t;)

double dt = min(elStop, t)-elStart; // Get the elapsed time
return angle(el+elRate*dt); //Get the current elecation

// method:getElevation~public; void; double:t;)

method:updateGunPos(public; void; double:t;) // Update to current position
// method:updateGunPos(public; void; double:t;)

az = getAzimuth~t); // Update the azimuth to time t
el = getElevation); /1Update the elevation to time t
if (azStop < t) IIIf we haven't actually arrived at the stop time, yet

azStop =2.0*Clock::getEndTime(); // Specify end time of current motion
azRate = 0.0; // Stop motion

Iif)azStop < t)

if (elStop < t) 1/If we haven't actually arrived at the stop time, yet

356

elStop = 2.0*Clock::getEndTime)); // Specify end time of current motion
elRate = 0.0; // Stop motion

Iif CeiStop < t)

azStart = elStart = t; /1specify time t as the new start time
// method:updateGunPos(public; void; double:t;)

method:turnGunTo(public; void; double:a; double:e;)
// method:turnGunTo~public; void; double:a; double:e)

updateGunPos(getTimeo); // Get the current gun position
azRate = angle(a-az) < 0 ? -azMaxRate azMaxRate; IITurn direction
elRate = angle ce-el) < 0 ? -elD~axRate :elMexRate; //Turn direction
azStop = getTimeo(angle(a-az)/azRate); // Get azimuth slew stop time
elStop = getTimeo+(angle(e-el)/elRate); // Get elevation slew stop time

// method:turnGunTo(public; void; double:a; double:e)

method:stopAzimuth(public; void; double:t;) // Stop azimuth at time t
// method:stopAzimuth(public; void; double:t;)

az = getAzimuth(t); IIUpdate the gun azimuth
azRate = 0.0; 1/Stop azimuth slewing
azStart = t; IINew affective time
azStop = 2.0*Clock::getEndTime(); 1/Get the stop time

// method:stopAzimuth(public; void; double:t;)

method:stopElevation(public; void; double:t;) // Stop elevation at time t
// method:stopElevation(public; void; double:t;)

el = gettlevation(t); 1/Update the gun elevation
elRate = 0.0; IIStop elevation slewing
elStart = t; IINew affective time
elStop = 2.0*Clock::getEndTime0; 1/Get the stop time

// method:stopElevation(public; void; double:t;)

method:notify(public; void; std: :vector<SetTankState>&:out;)
// method:notify(public; void; std: :vector<SetTankState>&:out;)

std::map<process, gvm::objectindex>::itecator i; // For loop index
for (i=views.begin(); i!=views.endo; ++i) //Loop over index map

out.push -back(me); //Allocate a new message
out.back().addDest(i->first); IIAdd this view as a destination
out.backo).index = i->second; // Specify the index
out.back().setAzimnuth(ez,azRate,azStart,azStop); // Specify azimuth
out.back().setElevation(el,elRate,elStert,elStop) ; // Specify elevation

// for (i=views.begino; i!=views.endo; +±i)
/method:notify(public; void; std: :vector<SetTankState>&:out;)

method:getPos(public; apt: :vertex; apt: :vertex:p; apt: :vertex:v;
spt::vertex:a; double:t;)

Ireturn p+(v+0.5*t*a)*t; I // Position affected by velocity & acceleration

method:getPos(public; spt::vertex; spt::vertex:p; spt::vertex:v; double:t;)
freturn p+(t*v); I // Position affected only by velocity

method:getPos(public; apt: :vertex; double:a; double:e; double:t;)
// method:getPos(public;spt: :vertex; ...

spt::vertex pos(O.O, 3);
spt::vertex acc(0.0, 3);
spt::vertex vel(0.0, 3);

vel[C] = mv*cos(e)*cos(a);
vel~l] = mv*cos(e)*sin(a);
vel[2] = mv*sin(e);

acc[0] =0.0;
acc[l] = 0.0;
acc[2] = -9.8;

return getPos(pos, vel, acc, t);
// method:getPos(public;spt: :vertex; .. .

method:turnTime(public; double; double:a; double:e;)
Ireturn max~fabs(engle~a) /az~axRate), fabs(angle~e) /elMaxRate)) ;

357

method:getIntercept(public; void; spt::vertex:p; spt::vertex&:sln;)
// method:getIntercept(public; void; spt::vertex:p; ...)

double r = norm(p); // Range to target
sln[O] = angle(atan2(p[l], p[Ol)); 1/ Get the gun's azimuth
sln[l] = 0.5*asin(9.8*r/(mv*mv)); // Get the gun's elevation
sln[2] = mv*sin(sln[l])/4.9; // Get the travel time

// method:getIntercept(public; void; spt::vertex:p; ...)

method:rotate(public; spt::vertex; spt::vertex&:v; double:theta;)
// method:rotate(public; spt::vertex; spt::vertex; double;)

double ct=cos(theta), st=sin(theta); // Get transformation coefficients
spt::vertex rv(0.0,3); I/ Return value valarray
rv[0]=ct*v[0]-st*v[l]; // Get the new 'x' component
rv[l]=st*v[0]+ct*v[l]; // Get the new 'y' component
return rv; // Return the valarray to the calling routine

// method:rotate(public; spt::vertex; spt::vertex; double;)

method:aim(public; void; ulong:track; double:err;) // Aim at track
// method:aim(public; void; ulong:track; double:err;)

double tt=0; // Turn time to target
double t = getTime(; // Convenience for the current time
double a = getAzimuth(t), e = getElevation(t); // Get current gun state
double bearing = nm.ap(t) [2]; // Get the current tank bearing
spt::vertex rp=tracks[track].lp(t)-nm.lp(t); // Rel target pos
spt::vertex rv=tracks[track].lv(t)-nm.lv(t); // Rel target vel
rp = rotate(rp,-bearing); // Rotate to reflect a relative bearing
rv = rotate(rv,-bearing); // Rotate this to relative bearing, too

spt::vertex diff(0.0,3); // Vector between impact and target
spt::vertex sln(O.0,3); // Place to hold gun firing solution
ulong c=0; // Counter to avoid infinite loops
t = 0; // Start with current time as a reference
do // Iteratively get solutions until within acceptable margin of error

getIntercept(getPos(rp,rv,sln[2]+tt), sln); // Solution to position
tt = turnTime(sln[0]-a, sln[l]-e); /I Calculate turn time
diff=getPos(rp,rv,sln[2]+tt)-getPos(sln[0],sln[l],sln[2]); // Imp diff

} // do
while (norm(diff)>err && ++c<10); // Loop until solution, or divergence
turnGunTo(sln[0], sln[l]); // Start turning the gun to where it belongs

// method:aim(public; void; ulong:track; double:err;)

mode: Default
{/ mode:Default

node:addView[AddView:in] [SetTankState:out=>(in.getSource(;)]
{/ node:addView[AddView:in] [SetTankState:out]

out.setAzimuth(az, azRate, azStart, azStop); // Specify gun azimuth
out.setElevation(el, elRate, elStart, elStop); // Specify gun elevation
out.index = in.index; // Set the index value

I // node:addView[AddView:in] [SetTankState:out]

node:unitSetup[UnitSetup:in] // Setting the environment
[SetEnvironment:se=>(rounds;), // Establish env.
SetColor:sc=>(me;), // Set this unit's color
RegisterEnvironmentObject:rst=>(in.environment;)] // Reg

// node:unitSetup[UnitSetup:in] [SetEnvironment:se]
se.setEnvironment(in.getEnvironment()); // Set the environment
se.setNode(in.getNode(); // Set the rendering node
rst.setForce(force = in.getForce(); // Set the force component
rst.setRadius(radius = in.getRadiuso); // Set the sensor radius
rst.setMotion(nm); // Set the newtonian motion parameters
if (force==RED) sc.set(l.0, 0.0, 0.0); // Set this unit's color
else if (force==BLUE) sc.set(0.0, 0.0, 1.0); // Red or Blue

// node:unitSetup[UnitSetup:in] [SetEnvironment:se]

node:addTrack[AddTrack:in] // Upon notification of a new track
[Attack:out=>(me;)] // Attack the new track

II/ node:addTrack[AddTrack:in] [Attack:out]
attack.setActive(true); // Start the attack sequence
out.setTX(targets.emptyo); // Don't bother if we're already attacking

358

targets.push(in.getTrack()); //
} // node:addTrack[AddTrack:in] [Attack:out]

node:impact[Impact:in][]
{ // node:impact[Impact:in] []

Default.setActive(false);
attack.setActive(false);
turn to dest.setActive(false);
move to dest.setActive(false);
turn to heading.setActive(false);

}/ node:impact[Impact:in][]
// mode:Default

mode:attack
// mode:attack

node:attack[Attack:in] // Upon notification of a new track
[StopAzimuthSlew:sas=>(me;):(azStop), // Slew azimuth
StopElevationSlew:ses=>(me;):(elStop), // Slew elevation
SetTankState:sts[l] // Notify views of new tank state

{ node:addTrack[AddTrack:in] [StopAzimuthSlew, StopElevationSlew, ...]
if (round<rounds.size() // If we have some tank rounds left

aim(targets.frontO,0.01); // Start moving gun to aim at target
notify(sts); // Notify the views that the gun parameters have changed

//if (round<rounds.size())
else // If there are no more tank rounds left

sas.setTX(false); // Don't bother realigning the gun
ses.setTX(false); // Or changing its elevation
attack.setActive(false); // Turn the attack mode off

}/ else from if (round<rounds.size)()
} // node:addTrack[AddTrack:in] [StopAzimuthSlew, StopElevationSlew, ... I

node:StopAzimuth[StopAzimuthSlew:in] // When the azimuth stops slewing
[Fire:f, // Fire the gun if we're all done aiming it
SetTankState:sts[]] // Notify views of new tank state

{ / node:StopAzimuth[StopAzimuthSlew:in] [Fire:f, SetTankState:sts[)]
double t = getTime(); // Get the current time
if (t == azStop) // If this message is for current slew

stopAzimuth(t); II Stop slewing the azimuth
notify(sts); // Notify the views that the azimuth has stopped
if (elStop>Clock::getEndTime() // If the elevation slew stopped

f.set(mv,az+nm.ap(t) [2],el,nm.lp(t),nm.lv(t)); // Set firing params
f.addDest(rounds[round++]); // Tell it to the next tank round

}/ if (elStop>Clock::getEndTime))
else f.setTX(false); // Don't fire until elevation slew is complete

// if (getTime) == azStop)
// node:StopAzimuth[StopAzimuthSlew:in][Fire:f, SetTankState:sts[]]

node:StopElevation[StopElevationSlew:in] // When elevation stops slewing
[Fire:f, // Fire the gun if we're all done aiming it
SetTankState:sts[]] // Notify views of new tank state

f // node:StopElevation[StopElevationSlew:in][Fire:f,SetTankState:sts[]]
double t = getTime(); // Get the current time
if (t == elStop) // If this message is for current slew

stopElevation(t); II Stop slewing the elevation
notify(sts); 1/ Notify the views that the elevation has stopped
if (azStop>Clock::getEndTime()) // If the elevation slew stopped

f.set(mv,az+nm.ap(t) [2],el,nm.lp(t),nm.lv(t)); // Set firing params
f.addDest(rounds[round++]); I/ Tell it to the next tank round

} // if (elStop>Clock::getEndTime))
else f.setTX(false); // Don't fire until elevation slew is complete

// if (getTime) == elStop)
} node:StopElevation[StopElevationSlew:in] [Fire:f,SetTankState:sts[]]

node:changeTrack[ChangeTrack:in] [Attack:out]
{II node:changeTrack[ChangeTrack:in] [Attack:out]

359

if (in.getTrack() == targets.front() // If this is the target...
out.set(in.getTrack(); // Reaim and start again

else // If it's not the one we're aiming at
out.setTX(false); // Don't change anything

// node:changeTrack[ChangeTrack:in] [Attack:out]

node:hit[Hit:in]
[Attack:out]

{/ node:hit[Hit:in] [Attack:out]
std::set<ulong> hits; // Sorted hits

for (ulong i=O; i<in.track.size(); ++i) // Loop over the hits
hits.insert(in.track[i]); // Put them in the set to sort them

while (!targets.empty() && // While targets remain
(hits.find(targets.front())!=hits.end() 11 // but they were hit
active.find(targets.fronto)==active.end())) // or lost

targets.pop(); / Pop the target from the queue

if (!targets.empty()) // If targets remain
out.set(targets.fronto); I/ Attack the next one

else // If no targets remain

out.setTX(false); // Don't send the attack message
attack.setActive(false); // Turn off the attack mode

// else from if (!targets.empty() out.set(targets.front())
}/ node:hit[Hit:in] [Attack:out]

// mode:attack
// process:Tank(Vehicle)

C.1.49. TrackEvent.msg

message:TrackEvent
message:Trackvent

ulong:force(O); // Force identifier for the track
ulong:track(((ulong) -1)); // Index of track being detected by sensor

method:set(public; void; ulong:t; ulong:f;) { track=t; force=f; I
method:setTrack(public; void; ulong:t;) { track=t; I
method:setForce(public; void; ulong:f;) { force=f; }
method:getForce(public; ulong;) { return force;
method:getTrack(public; ulong;) { return track; }

// message:TrackEvent

C.1.50. TrackMotionEvent.msg
{import message {TrackEvent})
{import spt {sptNewtonianMotion} I

message:TrackMotionEvent(TrackEvent)
{II message:TrackMotionEvent(TrackEvent)
spt::NewtonianMotion:motion; // Motion parameters of the track

method:setMotion(public; void; spt::NewtonianMotion:m;)
I motion=m; motion.setStopTime(2.0*Clock::getEndTime(); I

method:getMotion(public; spt::NewtonianMotion;) { return motion;
/I message:TrackMotionEvent(TrackEvent)

C.1.51. UnitSetup.msg
(import message {SetEnvironment} I

I
message:UnitSetup(SetEnvironment)

360

ulong:force; // Force identifier for the destination object
double:radius; // Radius of detection for destination unit

method:set(public; void; ulong:f; double:r; process:e; process:n;)
I force=f; radius=r; environment=e; renderNode=n;

method:setForce(public; void; ulong:f;) { force=f;
method:setRadius(public; void; double:r;) { radius=r;

method:getForce(public; ulong;) { return force; I
method:getRadius(public; double;) { return radius;

C.1.52. Vehicle.proc
{import process {SensorTrack) I
{import message {MoveTo, Stop, MovementComplete, HoldPosition,

SetNewtonianMotion}
{import std {<valarray>) I
{import spt {sptDefs} }
{import {<math.h>) I

process:Vehicle(SensorTrack)
{I process:Vehicle(SensorTrack)

double:maxVel; // Max vehicle velocity
double:maxRot; // Max vehicle rotation rate
spt::vertex:destPos(3); // Destination position
spt::vertex:destOri(3); // Destination orientation
double:orderTime; // Last order time, to ignore obsolete movement messages

method:init(public; void;)
// method:init(public; void;)

turn to dest.setActive(false); // Now turning to destination
move to dest.setActive(false); // Not yet moving to destination
turn to heading.setActive(false); I/ Not turning to final heading yet

// method:init(public; void;)

method:halt(protected; void; double:st; double:et;)
// method:halt(protected; void; double:st; double:et;)

spt::vertex z(O.0, 3); // z for zero
nm.set(nm.lp(st), z, z, nm.ap(st), z, z, st, et);
turn to dest.setActive(false); // Now turning to destination
move to dest.setActive(false); // Not yet moving to destination
turn to heading.setActive(false); // Not turning to final heading yet

// method:halt(protected; void; double:st; double:et;)

method:turn(protected; void; double:r; double:st; double:et;) // Rotation
// method:turn(protected; void; double:r; double:st; double:et;)

spt::vertex z(O.0, 3); // z for zero
spt::vertex tr(O.O, 3); /Turn rate
tr[2]=r; // Set the turn rate
nm.set(nm.lp(st),z,z,nm.ap(st),tr,z,st,et);

// method:turn(protected; void; double:r;)

method:forward(protected; void; double:r; double:st; double:et;) // Rate
// method:forward(protected; void; double:r;)

spt::vertex co(nm.ap(st)); II Get current orientation
spt::vertex z(O.0, 3); // z for zero
spt::vertex v(0.0, 3); / Velocity vector
v[0] = r*cos(co[21); // Get the velocity in the x direction
v[l] = r*sin(co[2]); // Get the velocity in the y direction

nm.set(nm.lp(st), v, z, co, z, z, st, et);
turn to dest.setActive(false); // No need to turn to destination
move to dest.setActive(true); // Moving to destination
turn to heading.setActive(false); // Not turning to final heading

// method:forward(protected; void; double:r;)

mode:Default

361

/mode:Default
node :holdPosition [H-oldPosition:in]

[Set~ewtonianMotion: out [l]
I/ node:holdPosition[HoldPosition:in] [Set~ewtonianMotion:out[]]

halt(getTimeo), 2.0*Clock: :getEndTime(); / / Stop all motion
notify(out); // Generate the output messages

// node:holdPosition[HoldPosition:in] [Set~ewtonianMotion:out[]]

node:moveTo[MoveTo:in] IIReceive order to move to a position/oni
[Stop:st=>(me;), //I Stop turning
SetNewtonianMotion:out[], IIInform views & environment
MovementComplete:mc=>(parent;)] // Movement is complete
Inode:moveTo[MoveTo:in] [StopTurn:st,Set~ewtonianMotion:out[]]

destPos = in.getPoso; // Save the destination position
destori = in.getorio; //Save the destination orientation
spt::vertex cp~nm.lp~getTimeofl); // Get current position
spt: :vertex co~nm.ap~getTime())); //Get current orientation
spt::vertex rp(destPos-cp); // Relative position
double dist-norm(rp); IIGet relative distance to destination
double theta = dist>0 ? atan2(rp[l], rp[0])

: co[2/ Direction to dest if not there
if (theta<0.0) theta ±= PI*2.0; // All positive
double rbspt: :AngularMotion: :angDiff (theta,co[2]); // Get rel hearing
double rh=spt: :AngularMotion: :angDiff(destOri)21 ,co[2]); // Rel heading
orderTime = getTime(); IIReacting to current order
mc.setTX~false); IIDon't transmit, by default

if (dist==0.0 && rh==0.0) IIAlready there?

mc.setTX(true); //Inform parent we're done
st.setTX~false); /1Don't transmit stop message
halt(getTimeo, 2.0*Clock::getEndlime))); // Stop all motion

/If we're at the destination
else if (dist==0.0) //If all we need to do is turn

double stop = orderTime+fabs(rh/maxRot); // Get stop time for motion
double rate =(rh<0.0 ? -maxRot : maxRot); IIGet proper turn rate
st.setTime~stop); /1Get the rotation time
turn(rate, orderTime, stop); IISet the turning parameters
turn to dest.setActive(false); IIDone turning to destination
move to dest.setActive~false); IIDone moving to destination
turn-to-heading.setActive~true); /1Turning to final heading yet

/else if (dist==0.0)
else if (rb==0.0) //If pointed in the right direction

double stop = orderTime+fabs(dist/maxVel); //Get motion stop time
st.setTime(stop); IIGet the rotation time
forward(maxVel, orderTime, stop); // Move forward at the max velocity

// If (dist !=0.0)
else 1/If we need to turn to the destination

double stop = orderlime+fabs~rb/maxRot); // Get stop time for motion
double rate = (rb<O.0 ? -maxRot :maxRot); IIGet proper turn rate
st.setTime(stop); /1Get the rotation time
turn~rate, orderTime, stop); /1Set the turning parameters
turn to dest.setActive~true); //Now turning to destination
move to dest.setActive~false); NI ot yet moving to destination
turn-to-heading.setActivefalse); // Rot turning to final heading yet

notify~out); //Generate the output messages
Inode:moveTo[MoveTo:in] [Stop:st,Set~ewtonianMotion:out[]]

/mode:Default

mode:tucn-to dest
Imode:turn-to-dest

node:stop[Stop:in] /1Receive order to move to a position/oni
[Stop: st=>)me;) , // Stop turning
Set~ewtonianMotion:out[], IIInform views & environment
MovementComplete:mc=>(parent;)] // Movement is complete
// node:stop[Stop:in] [Stop,Set~ewtonianMotion,MovementComplete]

mc.setTX~false); //Probably not done yet

362

if (in.getGenTime))==orderTime) IIIf this is something we obey

spt::vertex cp(nm.lp(getTime)))); IIGet current position
spt::vertex co(nm.ap~getTimeo)); // Get current oni
spt::vertex rp(destPos-cp); IIRelative position
double dist=norm(rp) ; IIDistance to destination
orderTime =getTimeVo; IIReacting to current order
double stop orderTime~fabs(dist/maxVel); 1/Get motion stop time
st.setTime(stop); 1/Get the rotation time
forward~maxVel, orderTime, stop); IIMove forward at the max velocity
notify(out); // Generate the output messages

Iif (in.getGenTimeo)==orderTime)
else /1If the order was from something we implicitly revoked

at. setTX (false);
1node:stop[Stop:in] [Stop, SetNewtonianMotion,MovementComplete]

Imode:turn_to_dest

mode:move to dest
I1 mode:move-to-dest

node:stop[Stop:in] 1/Receive order to move to a position/oni
[Stop:st=>(me;) , // Stop turning
SetNewtonianMotion:out[], IIInform views & environment
MovementComplete:mc=> (parent;)] // Movement is complete
// node:stop[Stop:in] [Stop,SetfewtonianMotion,MovementComplete]

mc.setTX~false) ; // Probably not done yet
if (in.getGenTime))==orderTime) //If this is something we obey

spt::vertex co~nm.ap(getTime)))); 1/Get current oni
double rh=spt: :AngularMotion: :anggiff (destOri[2] ,co[2]); // Rel hdng
orderTime = getTime)); /1Reacting to current order

if)rh != 0.0) 1/some rotation?

double stop = orderTime+fabs~rh/maxRot); 1/Get motion stop time
double rate = (rh<0.0 ? -maxRot :maxRot); /1Get proper turn rate
st.setTime~stop); //Get the rotation time
turn(rate, orderTime, stop); /1Set the turning parameters
turn to dest.setActive~false); //Done turning to destination
move to-dest.setActive~false); //Done moving to destination
turn to_heading.setActive~true); //Turning to final heading yet

// else if)rh !=0.0)
else /1If already in position & orientation

mc.setTX~true); IIInform parent we're done
st.setTX~false); IIDon't transmit stop message
halt~getTime)), 2.0*Clock::getEndTime))); //Stop all motion

notify~out); IIGenerate the output messages
Iif)in.getGenTimeo)==orderTime)

else /1If the order was from something we implicitly revoked
at. setTX)false);

Inode:stop[Stop:in] [Stop,SetNewtonianMotion,MovementComplete]
1mode:move-to-dest

mode:turn-to-heading
1mode:turn -to-heading

node:stop[Stop:in] //Receive order to move to a position/oni
[SetNewtonianMotion:out[], IIInform views & environment
MovementComplete:mc=> (parent;)] // movement is complete

// node:stop[Stop:in] [SetNewtonianMotion,Movementtomplete]
if)in.getGenTime))==orderTime) IIIf this is something we obey

halt~getTime)), 2.0*Clock: :getEndTime))); //Stop all motion
notify~out); // Generate the output messages

// if)in-getGenTimeo))==orderTime)
else IIIf the order was from something we implicitly revoked
mc.setTX~false);

Inode:stop[Stop:in] [SetNewtonianMotion,MovementComplete]
// mode:turn -to-heading

IIprocess:vehicle (SensorTrack)

363

C.1 .53. gvm/gvmAddTrack.h

IgvmnAddTrack.h - Class declaration for the gvro::AddTrack class

#ifndef ADDTRACKHINCLUDED
#de floe ADDTRACK_H_INCLUDED

#include "gvmChangeTrack .h

#include "gvmObject.h"

#define GVMAddTrack GVM_UserMessage0o3

namespace gym
/namespace gym

class View; //Forward declaration of the gvm::View class

class AddTrack :public ChangeTrack
/class AddTrack public ChangeTrack

private:
double radius; /1Radius of tank
ulong force; //Set the track iff value

public:
AddTrack(View&, double, object index, const spt::NewtonianMotion&,

GLdouble, ulong);

virtual void send(void); /1Deliver the message payload

1; /1class AddTrack :public Message
//namespace gymn

#endif

C.1 .54. gvm/gvmAddTrack.cxx

IgvmnAddTrack.cxx - Class method definitions for the gvm::AddTrack
II class

#include "gvmTacticalView.h"
#include "gvmAddTrack.h"
#include "gvmview. h"

namespace gym
1namespace gym

AddTrack: :AddTrack(View& v,
double t,
object index i,
const spt: :NewtonianMotion& nm,
double r,
ulong f)

ChangeTrack(v, t, GVMAddTrack, i. no), radius(r), force(f)
IAddTrack: :AddTrack(View&,double~object index,spt: :NewtonianMotion,
IAddTrack: :AddTrack(View&,double,object index, apt: :NewtonianMotion,..

void AddTrack: :send (void)
Ivoid AddTrack::send~void)

gym: :TacticalView& v = dynamic_cast<gvm: :TacticalView&>(getViewo);
v.addTrack(getDestfl, no, radius, force);

1void AddTrack::send(void)
/namespace gym

C.1 .55. gvm/gvmBateView.h

/gvmBattleView.h - Defines the gvm::BattleView class in which all gym::Object
/1 instances are viewed.

364

#ifndef GVMBATTLEVIEW H INCLUDED
#define GVMBATTLEVIEWHINCLUDED

#include <string>
#include <iostream>
#include "gvmView3D.h"
#include "gvmTank.h"
#include "spt/sptDefs.h"

namespace gvm
I/ namespace gym

class BattleView : public View3D
{I class BattleView : public View

protected:
spt::vertex vnv; // View normal vector
spt::vertex vup; // View up vector
spt::vertex vrv; // Right side of view
double forward, up, right; // Current speed in these directions
double speed; // Speed of motion when in motion

public:
BattleView(void); // Class constructor

virtual void createObject(object handle); // Schedule object creation
virtual void updateTravel(void); // Update camera motion parameters
virtual void begin(void); 1/ Start rendering the scene graph
virtual bool isDisplay(void); // Should we update the display?
virtual void keydown(byte,int,int); // Key press event callback
virtual void keyup(byte,int,int); // Key release event callback
virtual void motion(int, int); // Active mouse motion callback

}/ class BattleView : public View
}/ namespace gym

#endif

C.1.56. gvm/gvmBaftleView.cxx

I/ gvmBattleView.cxx - Class member and static definitions of the
I/ gvm::BattleView class.

#include "Exception.h"
#include "gvmTank.h"
#include "gvmCommandPost.h"
#include "gvmBattleView.h"
#include "gvmMunition.h"
#include "gvmGround.h"

namespace gvm
// namespace gym

BattleView::BattleView(void) // Window for the view
vnv(3), vup(3), vrv(3), forward(0.0), up(0.0), right(0.0), speed(l.0)

// BattleView::BattleView(void)
zFar = 40000.0; // Set the far clipping plane to 40,000m
pos[0] = 0.0; pos[l] = 0.0; pos[2] = 2000.0;
ori[0] = 0.0; ori[l] = 0.0; ori[2] = 0.0;
setTitle("BattleView");
setSceneChange(true); II Need to refresh display
redisplay); // Redisplay the environment

}/ BattleView::BattleView(void)

void BattleView::createObject(objecthandle h)
// void Battleview::createObject(object handle)

if (h.second >= objectList.size)) // Is this lined up properly
throw Exception::Nonspecific("Object count mis-alignment.");

switch (h.first) // Which object should we create?

case GVMTank: // A new Tank instance requested

365

objectList[h.second] = new Tank(*this, h.second);
break; // case GVM Tank:

case GVM CommandPost: // A new Command Post instance requested
objectList[h.second] = new CommandPost(*this, h.second);
break; // case GVM CommandPost:

case GVM Munition: I/ A new Munition instance requested
objectList~h.second] = new Munition(*this, h.second);
break; // case GVM Munition:

case GVM Ground: // A new Ground instance requested
objectList[h.second] = new Ground(*this, h.second);
break; // case GVMGround:

default: / Hone of the above
View3D::createObject(h); // Call the parent class version
break; // default

// switch (t)
// void BattleView::createObject(object handle)

void BattleView::updateTravel(void)
// void BattleView::updateTravel(void)

up = (up<0) ? up=-speed : (up>0) ? up=speed : 0.0;
right = (right<0) ? right=-speed : (right>0) ? right=speed : 0.0;
forward = (forward<0) ? forward=-speed : (forward>0) ? forward=speed : 0.0;

}/ void BattleView::updateTravel(void)

void BattleView::begin(void)
// void BattleView::begin(void)

pos += forward*vnv+right*vrv+up*vup; // Get the current position
if (pos[0]>10000.0) pos[0] = 10000.0; // Don't go out of the play box
if (pos[0]<-10000.0) pos[0] = -10000.0;
if (pos[l]>10000.0) pos[l] = 10000.0;
if (pos[l]<-10000.0) pos[l] = -10000.0;
if (pos[2]<100.0) pos[2] = 100.0; // Don't go below ground
if (zoom[0]) scale *= ZOOM FACTOR; // Zoom in if desired
if (zoom[l]) scale 1= ZOOM FACTOR; // Zoom out if desired
glMatrixMode(GL_PROJECTION; // Establish a projection view
glLoadIdentity(); // Load the identity matrix
gluPerspective(50.0, aspect, zNear, zFar); I/ Establish perspecive
glMatrixMode(GLMODELVIEW); I/ Extablish MODELVIEW
glLoadIdentity(; // Load another identity matrix
glBlendFunc(GL SRC ALPHA, GLONEMINUSSRC ALPHA); /H Mow to blend
gluLookAt(pos[0], pos[l], pos[2],

pos[0]+vnv[0], pos[l]+vnv[l], pos[2]+vnv[2],
vup[0], vup[l], vup[2]); // Setup the camera viewing paramters

glScaled(scale, scale, scale); // Zoom back aways
// void BattleView::begin(void)

bool BattleView::isDisplay(void)
// bool BattleView::isDisplay(void)

return (isVisible && refresh); // Should we redisplay
// bool BattleView::isDisplay(void)

void BattleView::keydown(byte key, int x, int y)
{/ void BattleView::keydown(byte,int,int)

glutSetWindow(window); // Set the window
switch (key) // Which key was pressed

case 'W': // Applies to either 'w' or shift-'w'
case 'w':

forward = speed; // We're moving forward
break;

case 'S': // Applies to either 's' or shift-'s'
case 's':

forward = -speed; // We're moving backward
break;

case 'A': // Applies to either 'a' or shift-'A'
case 'a':
right = speed; // We're moving left
break;

case 'D': // Applies to either 'a' or shift-'A'
case 'd':
right = -speed; // We're moving right

366

break;
case 'Q': II Applies to either 'a' or shift-'A'
case 'q':

up = speed; // We're moving up
break;

case 'E': // Applies to either 'e' or shift-'e'
case 'el:

up = -speed; // We're moving up
break;

case '1':
case '!': speed = 1.0; updateTravel(); break;
case 2':
case '@': speed = 2.0; updateTravel(); break;
case '3':
case '#': speed = 4.0; updateTravel(); break;
case 4':
case 1$': speed = 8.0; updateTravel(); break;
case 5':
case '%': speed = 16.0; updateTravel(); break;
case 6':
case ': speed = 32.0; updateTravel(); break;

case '7':
case '&': speed = 64.0; updateTravel(); break;
case 8':
case 1*': speed = 128.0; updateTravel(); break;

case '9':
case '(': speed = 256.0; updateTravel(); break;
case '0':
case ')': speed = 512.0; updateTravel(); break;
default:
View3D::keydown(key, x, y); // Call parent version

// switch (key)
setSceneChange(true); // Need to refresh display
redisplay); II Redisplay the environment

// void BattleView::keydown(byte,int,int)

void BattleView::keyup(byte key, int x, int y)
// void BattleView::keyup(byte,int,int)

glutSetWindow(window); // Set the window
switch (key) // Which key was pressed

case 'W': // Applies to either 'w' or shift-'w'
case 'wl:
case 'S': // Applies to either 's' or shift-'s'
case 's':

forward = 0.0; // No longermoving forward/back
break;

case 'A': // Applies to either 'a' or shift-'A'
case 'a':
case 'D': // Applies to either 'a' or shift-'A'
case 'd':

right = 0.0; // No longer moving right/left
break;

case 'Q': // Applies to either 'a' or shift-'A'
case 'q':
case 'E': // Applies to either 'e' or shift-'e'
case 'e':
up = 0.0; // No longer moving up.down
break;

default:
View3D::keyup(key, x, y); // Call parent version

// switch (key)
setSceneChange(true); // Need to refresh display
redisplay); // Redisplay the environment

// void BattleView::keyup(byte,int,int)

void BattleView::motion(int x, int y)
// void BattleView::motion(int, int)

glutSetWindow(window); // Set the window
if (buttonState(GLUTLEFTBUTTON]) // If the left button is down

367

ori[l] += (float) (mouseLoc[l]-y)*0.l25; 1/Change rotation about X
ori[2] += (float) (mouseLoc[O]-x)*O.l25; 1/Change rotation about Z
if (ori[l]>90.O) ori(1]=90.O; /1Don't pitch too high or too low
if (ori[l]<-90.O) ori[l]=-90.O;

// if (buttonState [GLUTLEFTBUTTON])

if (buttonState[GLUTRIGHTBUTTON]) /1If the right button is down
oci[O] += (float) (x-mouseLoc[O])*O.l25; // Change rotation about Z

if (buttonState[GLUTMIDDLEBUTTON]) IIIf the middle button is down

float dy =((float) (mouseLoc[l]-y))*O.2; IIGet the difference
scale *= pow)ZOOM FACTOR, dy); /1Get the scaling factor

Iif (buttonState[GLUTMIDDLEBUTTON])

mouseLoc[O] = x; IIGet the x component
mouseLoc~l] = y; IIGet the y component

GLdouble roll=ori[O]*PI/180.O; IIGet the roll in radians
GLdouble pitch=ori[l]*PI/l8O.O; //Get the pitch in radians
GLdouble yaw=ori[2]*PI/180.O; // Get the yaw in radians

GLdouble cx=cos (roll), cy=cos(pitch), cz=cos(yaw);
GLdouble sx=sin(roll(, sy=sin(pitch), sz=sin(yaw(;

vnv[O] = cz*cy; vnv[l] = sz~cy; vnv[2] = -sy;
vrv[O] = cz*sy*sx-sz*cx; vcv~l) = sz*sy*sx+cz*cx; vrv[2] = cy*sx;
vup[O] = cz*sy*cx+sz*sx; vup~l] = sz*sy*cx-cz*sx; vup[2] = cy*cx;

setSceneChange(true); // Need to refresh display
redisplay)); /1Redisplay the environment

Ivoid BattleView: :motion(int, int)

C.1 .57. gvm/gvmChangeTrack.h

IgvmChangeTrack.h - Class declaration for the gvm::ChangeTrack class

#ifndef CHANGETRACKNINCLUDED
#define CEANGETRACKNINCLUDED

#include "gvmnSetNewtonianMotion.h"
#include "gvmObject.h"
#include "spt/sptNewtonianMotion .h"

#define GyM ChangeTrack GVMUserMessageOO2

namespace gym
/namespace gym

class View; 1/Forward declaration of the gym: :View class

class ChangeTrack : public SetNewtonianMotion
// class ChangeTrack :public SetNewtonianMotion

public:
ChangeTrack(View&, double, object index, conat apt: :NewtonianMotion&);
ChangeTrack(View&, double, message type, object_index,

conat apt: :NewtonianMotion&);

virtual void send(void); // Deliver the message payload
1; IIclass ChangeTrack :public Message

} II namespace gym

#endif

C.1 .58. gvm/gvmChangeTrack.cxx

IgvmChangeTrack.cxx - Class method definitions for the gvm::ChangeTrack
// class

368

#include "gvmTacticalview.h"
#include "gvmChangeTrack.h
#include "gvmview.h"

namespace gym
Inamespace gym

ChangeTrack: :ChangeTrack(View& v,
double t,
object-index i,
const apt: :NewtonianMotion& nm)

SetNewtonianMotion(v, t, GyM ChangeTrack, i, nm)
IChangeTrack: :ChangeTrack(View&,double,object_index,NewtonianMotion, ..
IChangeTrack: :ChangeTrack(View&,double,object index,NewtonianMotion, . .

ChangeTrack: :ChangeTrack(View& v,
double t,
messege type by,
object-index i,
const spt::NewtonianMotion& nm)

SetNewtonianMotion(v, t, by, i, nm)
IIChangeTrack: :ChangeTrack (View&, double,message type, object -index,..
IChangeTrack: :ChangeTrack(View&,doubie,message type,object index,...)

void ChangeTrack: :send (void)
// void ChangeTrack::send(void)

gvrn::TacticalView& v = dynamic cast<gvm::Tacticalview&>(getView());
v.changeTrack(getDestLo, nm);

Ivoid ChangeTrack::send(void)
/namespace gym

C.1 .59. gvm/gvmCom mand Post. h

/gvmCommandPost.h - This draws a command post on the screen

i#ifndef GVMCOMMANDPOSTHINCLUDED
#define GVMCOMMANDPOSTHINCLUDED

#include "gvmNewtonianMotion .h
#include "gvmCube .h"

#define GVMCommandPost GVM_UserobjectOO2

namespace gym

class View3D;

class CommandPost : public NewtonianMotion

protected:
Cube body; IICommand post

public:
CommandPost~gvm::View3D&, ulong); IIClass constructor

virtual void display(void); 1/Display the command post
virtual bool isType(object type); /1Check if this is of type t

/class CommandPost : public NewtonianMotion

endi f

C.1 .60. gvm/gvmCom mand Post. cxx

IgvmCommandPost.cxx - Method definitions for the CommandPost class

369

#include <lostream>
#include <GL/glut~h
#include "gvmCornmandPost .h"
#include "gvmView3D.h"

namespace gym.

CommandPost: :CommandPost(gvm::View3D& v, ulong i)
NewtonianMotion(v,GVMCommandPost,i), body(v, i)

1CommandPost::CommandPost~gvm::View3D&, ulong)
mode = GL_LINES; /1Set the mode to polygon
body. set (20. 0);
body.setMode(GLLINES);

ICommandPost: :CommandPost(gvm: :View3D&, ulong)

void CommandPost: :display (void)
Ivoid CormandPost::display(void)

begin))
glPushMatrix o;
glTranslated(0.0, 0.0, 10.0); /1Put the CP above ground
glScaled(5.0, 4.0, 1.0); /1Main portion of the building
body.displayo; /1Display the main building portion
glPushMatrix o;

glTranslated(0.0, 0.0, 11.0); IIMove the roof on top
glScaled(l.l, 1.1, 0.1); //Make it thinner, and overhanging building
body.display)); 1/Display the roof

glPopMatrix ()
glPopMatrix (U
end))

Ivoid CommandPost::display~void)

bool CommandPost: :isType (object type c)
// bool CommandPost: :isType (object type)

return)c==GVMCommandPost 11 NewtonianMotion::isType~c));
Ibool CommandPost: :isType~object type)

/namespace gym

C.1 .61. gvm/gvmDeleteTrack.h

IgvmDeleteTrack.h - Class declaration for the gvm::DeleteTrack class

#ifndef DELETETRACKN INCLUDED
#define DELETETRACKNINCLUDED

#include "gvmMessage.h"
#include "gvm~bj ect .h

#define GVMDeleteTrack GVMUserMessage004

namespace gym
1namespace gym

class View; IIForward declaration of the gvrn::View class

class DeleteTrack :public Message
1class DeleteTrack public Message

public:
DeleteTrack)View&, double, object index);

virtual void send(void); 1/Deliver the message payload
1; IIclass DeleteTrack :public Message

Inamespace gvm

#endif

C.1 .62. gvm/gvmoeleteTrack.cxx

IgvmnDeleteTrack.cxx - Class method definitions for the gvm::DeleteTrack

370

// class

#finclude "gvmTacticalView. bY
#include "gvmDeleteTrack.h"
#include "gvmView.h"

namespace gym
/1narnespace gym

DeleteTrack: :DeleteTrack(View& v,
double t,
object-index i)

Message(v, t, GVMDeleteTrack, i)
IDeleteTrack: :DeleteTrack(View&,double,object_index)
/DeleteTrack: :DeleteTrack(View&,double,object index)

void DeleteTrack: :send (void)
// void DeleteTrack::send(void)

gvm::TacticalView& v = dynamic_cast<gvm::TacticalView&>(getView());
v.deleteTrack(getDesto);

II void DeleteTrack::send(void)
/namespace gym

C.1 .63. gvm/gvm Explosion. h

/gvmExplosion.h - Class declaration for the gym: :Explosion class

#ifndef EXPLOSION H INCLUDED
#define EXPLOSION_H_INCLUDED

#include "gvm~lessage.b"
#include "gvmObject.h'
#include "spt/sptDefs.b"

#define GVE Explosion GVMUser~essage005

namespace gym
/namespace gvm

class View; IIForward declaration of the gvm::View class

class Explosion :public Message
Iclass Explosion :public Message

protected:
spt::vertex pos; /1Location of the explosion

public:
Explosion(View&, double, object index, spt: :vertex);

virtual void send(void); // Deliver tbe message payload
Iclass Explosion :public Message

Inamespace gym

endi f

C.1 .64. gvm/gvm Explosion. cxx

IgvmExplosion.cxx - Class method definitions for tbe gvm::Explosion class

#include "gvmExplosion.h'
#include "gvmView.h"
#include "gvmMunition.b"

#ifdef _TRACE
#define EXPLOSIONTRACE false
#endif

namespace gym

371

// namespace gym
Explosion::Explosion(View& v, double t, object-index i, spt::vertex p)

Message(v, t, GVM Explosion, i), pos(p)
1/Explosion: :Explosion(View&,double,object index, spt: :vertex)
1Explosion: :Explosion(View&,double,object index, spt: :vertex)

void Explosion: :send(void)
/void Explosion::send(void)

Munition& mun = dynamic cast<Munition&>(getView()[getDesto]);
mun.explode (pos);I The munition has exploded

/void Explosion::send(void)
1namespace gym

C.1.65. gvm/gvmGrid.h

IgvmGrid.h - This draws an m x n grid of size width x height centered at
// (0,0)

#ifndef GVMGRID_H_INCLUDED
#~define GVMGRTD_H-INCLUDED

#include "gvmshape3D.h"

#define GVMGrid GVM-UserObjectDO4

namespace gym

class View3D;

class Grid : public Shape3D

protected:
ulong m, n; //Number of squares along x, y axis respectively
double width, height; IIWidth and height of the grid

public:
Grid(View3D&,objecttype,ulong,ulong,ulong,double,double);

virtual void display(void); // Display the command post
virtual bool isTypecobject type); IICheck if this is of type t

/class Grid :public NewtonianMotion

#endif

C.1 .66. gvm/gvmGrid.cxx

IgvznGrid.cxx - method definitions for the Grid class

#include <iostream>
#include <GL/glut .h>
#include "gvmGrid.h"
#include "gvmView3D.h"

namespace gym

Grid::Grid(gvm::View3D& v, object type t, ulong i,
ulong M, ulong N, double W, double H)

Shape3D(v,t,i), m(M), n(N), width(W), height(H)
/Grid: :Grid)view3D&,objecttype,ulong,ulong,ulong,double,double)
IGrid: :Grid(View3D&,objecttype,ulong,ulong,ulong,double,double)

void Grid: :display (void)

372

Ivoid Grid: :display(void)
double dx = width/((double) in); IIDistance between adjacet x lines
double dy = height/((double) n); IIDistance between adjacet y lines
double lx =width/2.0; IILimits of travel in x direction
double ly = height/2.0; IILimits of trevel in y direction

begin))
glPushAttrib(GLCURRENTBIT); 1/Get the current point size
glColor~d(O.0, 1.0, 0.0, 0.2); IISet color to translucent green
glBegin)GLLINES);

for (double x=-lx; x<=lx; x+=dx)

glVertex2d(x, -ly);
glVertex2d~x, ly);

for(double y=-ly; y<=ly; y+=dy)

glVertex2d)-lx, y);
glVertex2d(lx y);

glEndoW;
glPopAttrib)); IIRestore tbe color

end))
Ivoid Grid::display~void)

bool Grid::isType~object type c)
Ibool Grid::isType~object type)

return)c==GVMGrid 11 Shape3D: :isType)c)); // Return results
Ibool Grid::isType~object type)

Inamespace gym

C.1 .67. gvm/gvmGround.h

IgvmGround.h - This draws the ground

#ifndef GVNGROUNDHINCLUDED
4define GVMGROUNDNINCLUDED

#include 'gvmGrid.h

#define GVNGround GVN UserObjectDDS

namespece gym

class View3D;

class Ground : public Grid

public:
Ground)View3D&, ulong); 1/Class constructor

virtual bool isType~object type); IICheck if this is of type t
1;IIclass Ground :public Grid

ffendi f

C.1 .68. gvm/gvmGround.cxx

II vmGround.cxx - Method definitions for the Ground class

#include <iostream>
#include <GL/glut .h
#include "gvinGround.h"
#include "gvmView.h"

373

namespace gym

Ground::Ground(View3D& v, ulong i)
Grid(v,GVMGround, 1,20,20,20000.0,20000.0)

/Ground::Ground(View3D&, ulong)
mode = GLLINES; // Set the mode to polygon

IGround: :Ground(View3D&, ulong)

bool Ground: :isType (object type c)
/1bool Ground: :isType (object type)

return (c==GVMGround 11 Grid::isType(c)); // Return results
1 /1 bool Ground: :isType (object type)

/namespace gym

C.1 .69. gvm/gvmMunition.h

Igvml'unition.h - This draws a tank round on the screen

#ifndef GVMNUNITION-H-INCLUDED
#define GVMNUNITIONNINCLUDED

#include "gvmNewtonianMotion.h"
#include "spt/sptLinearMotion.h"'
#include "Random.h"

#define GVM Nunition GVNUserobject003

namespace gym

class View3D;

class Munition : public Newtonian~otion

protected:
std::vector<spt::LinearMotion> fragments; 1/Motion of fragments
bool exploding; IIAre we exploding yet?
sodl::Random rnd; IIRandom number generator
double eTime; //Explosion time

public:
Munition(gvm::View3D&, ulong); //Class constructor

virtual void display (void) ; IIDisplay the command post
virtual bool isType~object type); //Check if this is of type t
virtual void explode~spt::vertex); // Explode the munition

Iclass munition : public NewtonianMotion

#endif

C.1 .70. gvm/gvmMunition.cxx

Igvrn~unition.cxx - Method definitions for the Munition class

#include <iostream>
#include <GL/glut .h>
#include "gvmmunition.h"
#include "gvmview3D.h'

#define FRAGMENT_COUNT 500

namespace gv

Munition::Munition~gvm::View3D& v, ulong i)
NewtonianMotion)v, GVM_-Munition, i), fragments (FRAGMENTCOUNT),
exploding~false) , eTime (0.0)

374

{/ Munition::Munition(gvm::View3D&, ulong)
mode = GLLINES; // Set the mode to polygon

}/ Munition::Munition(gvm::View3D&, ulong)

void Munition::display(void)
// void Munition::display(void)

glPushAttrib(GL POINTBIT); // Save the current point size
glPushAttrib(GL CURRENTBIT); // Save the current drawing color
glPointSize(3.0) ; // Set the point size

glColor3d(l.0, 1.0, 1.0); II Set the color of the projectile to white

if (!exploding) // If we are on the initial flight to the target

glColor3d(l.0, 1.0, 1.0); // Set the color of the projectile to white
begin);

glBegin(GL POINTS); // Want to do points
glVertex3d(0.0, 0.0, 0.0); // Well, one of them any way

glEnd(); // That's it
end(); /All done here

}/ if (!exploding)
else // If we're doing the explosion now

double t=getView().getTime(); // Get the current time
double dt = t-eTime; // Difference between current & explosion times
if (dt >= 5.0) setActive(false); // Turn off after 5 sim-seconds
double alpha = 1.0-(dt/5.0); // Specify alpha component of fragments
glEnable(GLBLEND); // Enable alpha blending
glColor4d(l.0, 1.0, 1.0, alpha); // Set new color
glBegin(GL POINTS); // Draw the particles

for (ulong i=0; i<fragments.size); ++i) // Loop over all fragments

while (t>fragments[i].getStopTime)) II If we're doing a bounce

double stop = fragments[i].getStopTime(); // Get current stop time
spt::vertex p = fragments[i].lp(stop); // Get position at stop time

spt::vertex v = fragments[i].lv(stop); // Get velocity at stop time
spt::vertex a = fragments[i].la(stop); // Get acc at stop time
v *= 0.9; //Energy loss
v[2] = -v[2]; // Bounce
double newStop = stop-2.0*v[2]/a[2]; II Get next bounce time
fragments[i].setLM(p, v, a, stop, newStop); // Set next leg

} // if (t>fragments[i].getStopTime()
spt::vertex pos = fragments[i].lp(t); II Get fragment current pos
glVertex3d(pos[0], pos[l], pos[2]); // Draw the fragment

}I for (ulong i=0; i<fragments.size(; ++i)
glEndo); // glBegin(GL POLYGON)
glDisable(GLBLEND); II Disable alpha blending

// else from if (!exploding)
glPopAttrib(); // Restore the color
glPopAttrib); II Restore the point attributes

// void Munition::display(void)

void Munition::explode(spt::vertex p)
II void Munition::explode(spt::vertex)

spt::vertex dv(0.0, 3); II Delta from the main velocity vector
spt::vertex a(0.0, 3); // Acceleration
a[2] = -9.8; II Due to gravity

exploding = true; II We are now exploding;
eTime = getView().getTime(); II Save the explosion time
for (ulong i=0; i<fragments.size(); ++i) // Loop over all of the fragments

double theta {rnd.nextoouble(, 2.0*PI);
double phi = rnd.nextDouble(0.0, PI);
double red = rnd.nextDouble(0, 20.0);
dv[o] = rad*cos(phi)*cos(theta);
dv[l = rad*cos(phi)*sin(theta);
dv[2] = rad*sin(phi)+5.0;
double stop = eTime-2.0*(dv[2])/a[2];
fragments[i].setLM(p, dv, a, eTime, stop);

375

Ifor (ulong i=0; i<fragments.size(); ++i)
// void Munition: :explode(spt: :vertex)

bool Munition: :isType(object type c)
// bool Munition: :isType(object type)

return (c==GVMMunition 11 NewtonianMotion: :isType (c)); // Return results
Ibool Munition: :isType(object type)

Inamespace gym

C.1 .71. gvmn/gvmnNewtonianMotion.h

IgvuMewtonianMotion.h - This draws a command post on the screen

#ifndef GVMNEWTOMIAMOTIO_-HIMCLUDED
#define GVMMEWTOMTAMMOTIONHIMCLUDED

#include "gvmShape3D.h"
#include 'spt/spt~ewtonianMotion.h"

#define GVMMewtonianMotion GVM-UserObjectOOO

namespace gym.

class View3D;

class MewtonianMotion : public Shape3D

protected:
MewtonianMotion~gvm::View3D&, object type, ulong); /1Class constructor
spt::NewtonianMotion nm; N1 ewtonian motion parameters

public:
virtual void setMM(const spt::MewtonianMotion&); IIUpdate parameters
virtual void begin(void); // Begin displaying the object
virtual void end(void); IIWe're all finished with the object
virtual bool isType(object type); // Check if this is of type t

Iclass MewtonianMotion : public Shape3D

#endif

C. 1.72. gvm/gvm Newtonian Motion. cxx

/gvm~ewtonianMotion.cxx - Method definitions for the MewtonianMotion class

#include <CL/glut. h>
#include "gvmNewtonianMotion.h"
#include "gvmView3D.h
#include <math.h>
#include "spt/sptDefs .h"

namespace gym

MewtonianMotion::MewtonianMotion(gvmn::View3D& v, object-type t, ulong i)
Shape3D(v, t, i)

/1 ewtonianMotion: :MewtonianMotion(gvm: :View3D&, ulong)
/1 ewtonianMotion: :NewtonianMotion(gvm: :View3D&, ulong)

void MewtonianMotion: :begin (void)
// void MewtonianMotion: :begin(void)

double time = getViewo.getTimeo; // Get current time
spt::vertex p05 = nmn.lp~time); 1/Get current position
spt::vertex rot = 180.0*nm.ap~time)/PI; // Get orientation

glPushMatrix)); IIPush the current matrix
glTranslated(pos[0), pos~l], pos[2]); IIMove to the proper position
glRotated(rot[0], 1.0, 0.0, 0.0); 1/Roll

376

glRotatedirot[l], 0.0, 1.0, 0.0); /1Pitch
glRotated(rot[2], 0.0, 0.0, 1.0); /Yaw
Shape3D::begino; IICall the parent version of the begin method

// void NewtonianMotion: :begin(void)

void NewtonianMotion: :end (void)
// void NewtonianMotion: :end(void)

Shape3D::endo; IICall the parent version of the end method
glPopMatrix o; // Pop the matrix

Ivoid NewtonianMotion: :end(void)

void NewtonianMotion: :setNM(const spt: :Nawtonianmotion& n)
/void NewtonianMotion::setNM(const spt::NewtonianMotion&)

nm=n; // Set the newtonin motion paramters
Ivoid NewtonianMotion::setNM(const spt::NewtonianMotion&)

bool NewtonianMotion: :isType (object type c)
// bool NewtonianMotion: :isType (object type)

return (c==GVMNewtonianMotion 11 Shape3O::isType(c)); // Return results
/bool NewtonianMotion: :isTypa (object type)

Inamespace gym

C.1 .73. gvm/gvmSetNewtonianMotion.h

IgvmSetNewtonianMotion.h - Class declaration for the
II gym: :SetNewtonianMotion class

1#ifndef SETNEWTONIANPOSITION_H_INCLUDED
#define SETNEWTONTANPOSITIONHINCLUDED

#~include "gvmMessage.h"
#~include "gvmObject.h"
#include "spt/sptNewtonianMotion.h"

#define GVMSetNawtonianMotion GVMUserMessageool

namespace gymn
/namespace gym

class View; 1/Forward declaration of the gym: :View class

class SetNewtonianMotion :public Message
// class SetNewtonianMotion public Message

protected:
spt::NewtonianMotion nm; IINetonian motion parameters

public:
SetNewtonianMotion (View&, double, object-index,

const apt: :NewtonianMotion&(;
SetNewtonianMotion(View&, double, message type, objectindex,

const apt: :NewtonianMotion&(;

virtual void send(void(; // Deliver the message payload
/class SetNewtonianMotion : public SetMotion

1namespace gym

endi f

C. 1.74. gvm/gvmSetNewtonianMotion .cxx

IgvmSetNawtonianMotion.cxx - Class method definitions for the
II gym: :SetNewtonianMotion class

#include "gvmSetNewtonianMotion .h
#include "gvmView.h"
#include "gviNewtonianMotion.h"

namespace gvm

377

Inamespace gym
SetNewtonianMotion: :SetNewtonianMotion(View& v,

double t,
object index i,
const spt::NewtonianMotion& n)

Message(v, t, GVMSetNewtonianMotion, i), nm(n)
ISetNewtonianMotion::SetNewtonianMotion(View&, double,
ISetNewtonianMotion::SetNewtonianMotion(View&, double,

SetNewtonianMotion: :SetNewtonianMotion(View& v,
double t,
message type ty,
object index i.
const spt::NewtonianMotion& n)

Message(v, t, ty, i), nm(n)
ISetNewtonianMotion::SetNewtonianMotion(View&, double, .

/SetNewtonianMotion::SetNewtonianMotion(View&, double, .

void SetNewtonianMotion: :send (void)
// void SetNewtonianMotion: :send (void)

NewtonianMotion* m--dynamic cast<NewtonianMotion*>(&getView()[getDest()]);
if (m!=NULL) m->setNM(nm); IISet destination Newtonian motion parameters

//void SetNewtonianMotion: :send (void)
/namespace gym

C.1 .75. gvm/gvmSetTankState.h

IgvmSetTankState.h - Class declaration for the gvm::SetTankState class

#ifndef SETTANKSTATEHINCLUDED
#define SETTANKSTATE-HINCLUDED

#include "gvrnMessage.h"
#include "gvmObject.h"

#define GVMSetTankState GVM UserMessageOoO

namespace gym
/namespace gym

class view; /1Forward declaration of the gvm::View class

class SetTankState : public Message
Iclass SetTankState :public Message

private:
double az; /1Gun azimuth
double azRate; IIAzimuth slew rate
double azStart; 1/Azimuth slew start time
double azStop; IIAzimuth slew start time
double el; // Gun elevation
double elRate; /1Elevation slew rate
double elStart; /1Elevation slew start time
double elStop; IIElevation slew start time

public:
SetTankState(View&, double, object index, double, double, double, double,

double, double, double, double);

virtual void send~void); // Deliver the message payload
1class SetTankState :public Message

Inamespace gym
endi f

C.1 .76. gvm/gvmSetTankState.cxx

/gvmSetTankState.cxx - Class method definitions for the gvmn::SetTankState
// class

378

#include "gvmSetTankState.h"
#include "gvmview.h"
#include "gvmTank.h"

i#ifdef _TRACE
#define SETTANKSTATETRACE false
#endif

namespace gym
I // namespace gym

SetTankState::SetTankState (View& v,
double t,
object index i,
double a,
double ar,
double asO,
double asi,
double e,
double er,
double esO,
double esi)

Message(v, t, GVMSetTankState, i), az(a), azRate(ar), azStart(asO),
azStop(asl), el(e), elRate(er), elStart(esO), elStop(esl)
IISetTankState::SetTankState(View&, double, object -index, GLdouble, .

/SetTankState::SetTankState(View&, double, object-index, GLdouble,.

void SetTankState: :send (void)
// void SetTankState::send(void)

gym: :Tank &t = dynamic cast<gvm: :Tank&>(getView()[getDesto]);
t.setTank(az, azRate, azStart, azStop, el, elRate, elStart, elStop);

1void SetTankState::send(void)
1 /1 namespace gym

C.1 .77. gvm/gvmTacticalGrid.h

IgvmTacticalcrid.h - This draws the ground

#ifndef GVMTACTICALGRIDHINCLUDED
#define GVMTACTICALGRIDHINCLUDED

#include "gvmGrid.h"

#define GVM TacticalGrid GVM-Userobject0O6

namespace gym

class View3D;

class TacticalGrid :public Grid

public:
TacticalGrid(View3D&, ulong); IIClass constructor

virtual bool isType~object type); 1/Check if this is of type t
1; IIclass TacticalGrid : public Grid

#endif

C.1 .78. gvm/gvmTacticalGrid.cxx

/gvmTacticalGrid.cxx - Method definitions for the TacticalGrid class

#include <iostream>
#include <GL/glut .h>
#include "gvmTacticalGrid.h"

379

#include "gvmView.h"

namespace gvm

TacticalGrid::TacticalGrid(View3D& v, ulong i)
Grid(v, GVMTacticalGrid, i,20,20,20000.0,20000.0)

// TacticalGrid::TacticalGrid(View3D&, ulong)
mode = GLLINES; // Set the mode to polygon

// TacticalGrid::TacticalGrid(View3D&, ulong)

bool TacticalGrid::isType(object type c)
// bool TacticalGrid::isType(object type)

return (c==GVMTacticalGrid 1I Grid::isType(c)); // Return results
}I bool TacticalGrid::isType(objecttype)

// namespace gvm

C.1.79. gvm/gvmTacticalView.h

// gvmTacticalView.h - Defines the gvm::TacticalView class in which all
// gvm::Object instances are viewed.

#ifndef GVMTACTICALVIEW-H-INCLUDED
#define GVMTACTICALVIEW-HINCLUDED

#include "spt/sptEnvironmentObject.h"
#include "gvmView3D.h"
#include "gvmTrack.h"
#include <vector>

namespace gvm
I/ namespace gvm

class TacticalGrid;

class TacticalView : public View3D
// class TacticalView public View3D

protected:
GLint width, height; // Width and height of the tactical view port
TacticalGrid *grid; // Refrence grid
std::vector<Track> trackList; // List of the tracks

public:

TacticalView(void); // Class constructor

virtual void reshape(int, int); // Callback for window resizing

virtual void createObject(object handle); // Schedule object creation
virtual void begin(void); // Start rendering the scene graph
virtual void display(void); // Display the tracks
virtual void end(void); // Stop rendering the scene graph
virtual bool isDisplay(void); // Should we update the display?
virtual void addTrack(object_index, spt::NewtonianMotion, double, ulong);
virtual void changeTrack(objectindex, spt::NewtonianMotion);
virtual void deleteTrack(objectindex);

}I class TacticalView : public View3D
// namespace gvm

#endif

C.1.80. gvm/gvmTacticalView.cxx

I/ gvmTacticalView.cxx - Class member and static definitions of the
// gvm::TacticalView class.

#ifdef TRACE
#define TACTICALVIEW TRACE false
#endif

380

#include 'Exception.h
#include "gvmTacticalView.h
#include "gvmTaCticalGrid.h
#finclude "EngineStand.h

namespace gym
1namespace gym

TacticalView::Tacticalview~void) //Window for the view
/1TacticalView: :TacticalView (void)

setSceneChange(true); // Need to refresh display
redisplayo(;1 Redisplay the environment
GLint vp[4]; // Viewport parameters
glGetlntegerv(GLVIEWPORT, vp); /1Get the window viewport params
width =vp[2]; height = vp[31; IIGet the height and width of the viewport
grid =new TacticalGrid(*this, 0); // Add the grid
grid->setColor(0.0, 0.0, 1.0, 1.0); IISet the grid color

for (ulong i=0; i<100; +±i) IIAllocate an initial 100 tracks

trackList.pushback~gvm::Track(*this,i,-1.0,NEUTRAL));
trackList.backo.setActive(false); // Set the active flag

// while (trackList.sizeo<=i)
1TacticalView: :TacticalView~void)

void TacticalView::reshape~int w, mnt h)
/void TacticalView: :reshape~int, int)

View3O::reshape)w, h);
width = w; height = h

redisplay))
Ivoid TacticalView::reshape~int, int)

void TacticalView: :createObject~object_handle h)
Ivoid TacticalView::createObject~object handle)
/void TacticalView::createobject~object-handle)

void TacticalView: :begin (void)
/void TacticalView: :begin~void)

glutSetWindow (window); // Set the window
gl~atrix~ode)GLPROJECTION); /1Establish a projection view
glLoadldentity)); // Load the identity matrix
gluPerspective)90.0, aspect, 9000.0, 11000.0); /1Establish perspecive
gl~atrix~ode)GLNODELVIEW); //Extablish NODELVIEW
glLoadldentity(); IILoad another identity matrix
glBlendFunc)GLSRCALPHA, GLONE MINUSSRCALPHA); //How to blend
glRotated)-90.0 0.0, 0.0, 1.0); /1Get it corectly positioned
glRotated)180.0, 0.0, 1.0, 0.0); /1Get it corectly positioned
glTranslated(0.0, 0.0, 10500.0); 1/Position the view

Ivoid TacticalView: :begin~void)

void TacticalView: :display (void)
/void TacticalView: :display~void(

if (isoisplay)) 11 sodl::EngineStand::stand.holdingo)(// Update the scene?

begin)); IILet derived classes do what they need
GLboolean smooth =gllsEnabled)GL_-POINTSNOOTH); // Setting to restore
if (!smooth) glEnable)GLPOINTSMOOTH); 1/Create smooth points
glPointSize (ptSize) ; // Set the point size

for (ulong i=0; i<tcackList.size)); ++i) trackListfi] .displaySensoro;
grid->display)(; // Display the grid
for (ulong i=0; i<trackList.sizeo; ++i) trackList[i] .displayTrack((;

setRefresh~sodl: :EngineStand: :stand.holding()); // Set the refresh value
setSceneChange~false); // The scene has not changed
if ((smooth) gloisable)GL_POINT_SNOOTH); // Create smooth points
end)); /1Let derived classes do the cleanup

// if (is~isplay)
Ivoid TacticalView: :display~void)

void TacticalView: :end (void)
// void TacticalView::end~void(

381

glutSwapBuffers(); // Swap the buffers
glClear(GLCOLOR BUFFER-BIT I GLDEPTHBUFFER BIT); // Reset the buffer

/7 void TacticalView::end(void)

void TacticalView::addTrack(object index i, // Track ID #
spt::NewtonianMotion nm, // Motion parameters
double r, // Sensor radius
ulong f) // Force indicator

// void TacticalView::addTrack(object index,spt::NewtonianMotion....)
trackList[i].setTrack(r, f); / Set the track parameters
trackList[i].setNM(nm); // Set the motion parameters
trackList[i].setActive(true); // Turn the track on

// void TacticalView::addTrack(object index,spt::NewtonianMotion,...)

void TacticalView::changeTrack(object index i, // Track ID #
spt::NewtonianMotion nm) // Motion parameters

{I void TacticalView::changeTrack(object index,spt::NewtonianMotion)
if (trackList[i].isActive()) trackList[i].setNM(nm); // If it's active, set

// void TacticalView::changeTrack(object index,spt::NewtonianMotion)

void TacticalView::deleteTrack(object index i) // Track ID #
// void TacticalView::deleteTrack(object index)

trackList[il.setActive(false); // Set the track parameters
// void TacticalView::deleteTrack(objectindex)

bool TacticalView::isDisplay(void)
{/ bool TacticalView::isDisplay(void)

return (isVisible && refresh); // Should we redisplay
// bool TacticalView::isDisplay(void)

C.1.81. gvm/gvmTank.h

// gvmTank.h - This draws a tank on the screen

#ifndef GVMTANK H INCLUDED
#define GVMTANKH_INCLUDED

#include "gvmNewtonianMotion.h"
#include "gvmCube.h"
#include "gvmCylinder.h"
#include "gvmSphere.h"

#define GVM Tank GVM UserObject001
#define LINE ABREAST 0
#define VFORMATION 1
#define FORWARD SWEEP 2
#define COLUMN

namespace gvm

class View3D;

class Tank : public NewtonianMotion

protected:
double az; // Gun azimuth
double azRate; // Azimuth slew rate
double azStart; // Azimuth slew start time
double azStop; // Azimuth slew start time
double el; // Gun elevation
double elRate; // Elevation slew rate
double elStart; // Elevation slew start time
double elStop; // Elevation slew start time

Cylinder gun; // Tank gun
Sphere turret; // Tank turret
Cube body; II Tank body

382

public:
Tank~gvm::View3D&, ulong); IIClass constructor

virtual double getAzimuth(double); //Get the current azimuth
virtual double getElevation~double); IIGet the current elevation
virtual void display(void); // Display the tank
virtual void setTank(double,double,double,double,double,double,double,

double);
virtual bool isType~object type); IICheck if this is of type t

/class Tank :public NewtonianMotion

#endi f

C.1.82. gvm/gvmTank.cxx

IgvmTank.cxx - Method definitions for the Tank class

#include <iostream>
#include <GL/glut h>
#include "gvmTank.h"
#include "gvmView3o.h"

double deg(double r) {return 180.0*r/PI;
double rad(double d) {return PI*d/l80.0;

namespace gym

Tank: :Tank(gvn: :View3D& v, ulong i)
NewtonianMotion(v,GVMTank,i), az(0.0), azRate(0.0), azStart(0.0),
azStop(0.0), el(0.0), elRate(0.0), elStart(0.0), elStop(0.0), gun(v,i),
turret)v,i), body~v,i)

ITank::Tank(gvm::View3D&, ulong)
mode = GLLTNES; //Set the mode to polygon
gun.set(0.5, 15.0, 10, 10);
gun. setMode)GLLINES);
turret.set~l.5, 10, 10);
turret.setMode(GLLINES);
body.set(l.0);
body.setMode (GLLINES);

ITank: :Tank~gvm: :View3D&, ulong)

void Tank: :display~void)
// void Tank: :display~void)

double t = getview)).getTime)); IIGet current time for display purposes

begin)); IIPerform the setup
glPushMatrix));

glTranslated)0.0, 0.0, 1.0); 1/Move tank above the ground
glPushMatrix));
glScaled)15.0, 10, 1.0); 1/Outer, thinner portion of tank body
body.display)); IIDisplay the body

glPopMatrix));

glPushMatrix));
glScaled(l0.0, 7.5, 2.0); IIInner, fatter portion of the tank body
body.displayoj; IIDisplay that part

glPopMatrixo;

glPushMatrix));
glTranslated)2.0, 0.0, 2.25); IIMove turret assy forward from center
glRotated~deg~getAzimuth~t)),0.0,0.0,l.0); // Set turret azimuth
glRotated)90.0-deg~getElevation~t)),0.0,l.0,0.0); // Set gun elevation
turret.display)); IIDisplay the turret portion
p1 PushMatrix));

glTranslated)0.0, 0.0, 7.5); IIChange the center of the gun
gun.display)); IIDisplay the gun
glPushMatrix))
glTranslated)0.0, 0.0, 7.5); /1Final embelishment on end of gun

383

glScaled(l.0, 1.5, 0.05); //Slightly wider than high
gun.display)U I Redisplay the cylinder
glPopmatrix);

glPopMatrix 0;
glPopMatrixo);

glPopMatrix 0;
end C)

/void Tank: :display~void)

double Tank: :getAzimuth~double t) //Effective time of azimuth
/double Tank: :getAzimuth(double)

double dt = min~azStop, t)-azStart; // Get the elapsed time
double rv = fmod(az+azRate*dt, 2.0*PI); IIGet the raw azimuth position
return)rv < 0.0 ? rv+2.0*PI : rv); // Return in range [0, 2*PI)

Idouble Tank: :getAzimuth(double)

double Tank::getslevation(double t) // Effective time of elevation
/double Tank: :getElevation(double)

double dt = min(elStop, t)-elStart; // Get the elapsed time
double rv = fmod(el+elRate*dt, 2.0*PI); //Get the raw elevation position
return (rv < 0.0 ? rv+2.0*PI : rv); // Return in range [0, 2*PI)

1double Tank: :getElevation(double)

void Tank::setTank(double a, double ar, double asO, double asl,
double a, double er, double esO, double esl)

/void Tank: :setTanl (double,double,double,double,double,double,
az =a; azRate = ar; azStart asO; azStop = asi;
el = e; elRate = er; elStart = esO; elStop = esi;
getViewo.setSceneChange(true); // Don't need to refresh again

// void Tank::setTanl(double,double,double,double,double,double,..

bool Tank::isType~object type c)
// bool Tank::isType(object type)

return (c==GVMTank 11 NewtonianMotion::isType(c)); // Return results
/bool Tank::isType~object type)

/namespace gym

C.1 .83. gvm/gvmTrack.h

IgvmTrack.h - This draws a tank on the screen

#ifndef GVMTRACKHINCLUDED

4de fine GVMTRACKHINCLUDED

#include "gvmNewtonianMotion.h"

#define GVMTrack GVMNUserObjectOO7

namespace gym

class View3D;

class Track : public Newtonian~otion

protected:
double radius; IISensor radius
ulong force; /1Force indicator
static std::vector<std::pair<double, double> > disc; //Disc elements

public:
Track(gvm::View3D&, ulong, double, ulong); IIClass constructor

virtual void displayTrack~void); IIDisplay the track
virtual void displaySensor~void); //Display sensor range information
virtual void setTrack(double, ulong); // Set the track parameters
virtual bool isType(object type); IICheck if this is of type t

Iclass Track : public NewtonianMotion

384

#endif

C-1 .84. gvm/gvmTrack.cxx

IgvmTrack.cxx - Method definitions for the Track class

#include <lostream>
#include <GL/glut.h>
#include "gvmTrack.h"
#include "gvmView3D.h"
#include "spt/sptEnvironmentObject .h"

#define DISC_SIZE 64

namespace gym

std: :vector<std: :pair<double, double> > Track: :disc;

Track::Track(gvm::View3D& v, ulong i, double r, ulong f)
Newtonian~otion(v,GVMTrack,i), radius (r), force(f)

// Track: :Track(gvm: :View3D&, ulong)
mode = CL_LINES; // Set the mode to polygon
if (disc.empty()) IIIf the disc components have not yet been initialized

double dt = 2.O*PI/((double) DISCSIZE); IIDelta theta
for (double theta=0; theta<2.D*PI; theta+=dt(/ loop over disc
disc.push-back(makepair(cos(theta), sin(theta))); / Get each point

//I if (disc.empty()

if (force == BLUE) setColor(0.0, 0.0, 1.D, 1.0);
else if (force == RED) setColor(l.D, 0.0, 0.0, 1.0);
else setColor(l.0, 1.D, 1.0, 1.0);

//Track: :Track(gvm: :View3D&, ulong)

void Track: :displayTrack (void)
Ivoid Track::displayTrack(void)

if (isActive))) IIIf this is an active track

begin)); 1/Perform the setup
glBegin (GLQUADS);
glVertex2d(200.0, 0.0);
glVertex2d(0.0, -50.0);
glVertex2d(-50.0, 0.0);
glVertex2d(0.0, 50.0);

glEndo;
end)); IIStop displaying this track

// if (isActiveo)
/void Track::displayTrack(void)

void Track: :displaySensor (void)
/void Track: :displaySensor(void)

if (isActive)) && radius>0.0) //If this is an active track

ulong i; IIFor loop index variable
GLdouble dred = (force == BLUE ? 0.0 :0.5);
GLdouble dgreen =(force ==RED 11 force == BLUE ? 0.0 : 0.5);
GLdouble dblue =(force ==RED ? 0.0 : 0.5);

begin)); // Perform the setup
glEnable(GLBLEND); /1Enable alpha blending
glColor4d(dred, dgreen, dblue, 0.4); // Set new color
glBegin(GL POLYGON); IIDraw the filled portion
for(i=0; i<disc.sizeo; ++i) IILoop over the points in the disc
glVertex2d(radius*disc[i) .first, radius*disc[i] .second);

glEnd (; // glBegin(GLPOLYGON)
glDisable(GLBLEND); 1/Disable alpha blending

end)); /1Stop displaying this track
} I// if (isActiveo))

1void Track: :displaySensor(void)

385

void Track::setTrack(double r, ulong f)
{/ void Track::setTrack(double, ulong)

radius = r;

force f;

if (force == BLUE) setColor(0.0, 0.0, 1.0, 1.0);
else if (force == RED) setColor(l.0, 0.0, 0.0, 1.0);
else setColor(l.0, 1.0, 1.0, 1.0);

// void Track::setTrack(double, ulong)

bool Track::isType(objecttype c)
// bool Track::isType(objecttype)

return (c==GVMTrack II NewtonianMotion::isType(c)); // Return results
}/ bool Track::isType(objecttype)

// namespace gym

C.1.85. spt/sptAngularMotion.h
{import process {NewtonianMotion) I
{import message {AddTrack, ChangeTrack, LoseTrack, AddEnvironment,

SetEnvironment, SetNewtonianMotion, Impact, Destroyed)
{import spt {sptEnvironmentObject, sptNewtonianMotion} I
{import std {<vector>} I

process:SensorTrack(NewtonianMotion)
// process:SensorTrack(NewtonianMotion)

ulong:envIndex((ulong) (-l)); // Index within the environment
process:environment; // Environment process
process:parent; // Parent object to report back to
double:radius(2000.0); // Sensor Radius
ulong:force(NEUTRAL); // Initially neutral, until we know better
spt::NewtonianMotion:tracks[]; // Collection of known tracks
std::set<ulong>:active; // Collection of active tracks

method:isActive(public; bool; ulong:i;) / Is track i active?
I return active.find(i) !=active.end();

method:notify(public; void; std::vector<SetNewtonianMotion>&:out;)
// method:notify(public; void; std::vector<SetNewtonianMotion>&:out;)

NewtonianMotion::notify(out); // Call the parent version
if (envIndex != ((ulong) -1)) // If we have registered with environment

out.push back(me); II Allocate a new message
out.back().addDest(environment); // Add environment as dest
out.back((.addDest(parent); // Add environment as dest
out.backo).index = envIndex; // Specify the index
out.back().set(nm); // Specify the Linear Motion paramters

// if (envlndex != ((ulong) -1))
// method:notify(public; void; std::vector<SetNewtonianMotion>&:out;)

mode: Default

// mode:Default
node:addEnvironment[AddEnvironment:in]

[SetNewtonianMotion:out=>(parent;)]
// Node:addEnvironment[AddEnvironment:in] [...]

envIndex = in.index; // Save the environment index
out.index = envIndex; // Notify parent of new index
out.set(nm); // Set the motion parameters

// Node:addEnvironment[AddEnvironment:in] [...]

node:setEnvironment[SetEnvironment:in] []
// node:setEnvironment[SetEnvironment:in] []

environment = in.environment; // Environment in which this exists
parent = in.getSource)(; // Save the parent process handle

// node:setEnvironment[SetEnvironment:in] []

node:addTrack[AddTrack:in] [AddTrack:out=>(parent;)]
// node:addTrack[AddTrack:in][AddTrack:out]

if (tracks.size) <= in.getTrack)) // If tracks isn't big enough

386

tracks.resize(in.getTrack))+l); IIResize the track list

tracks[in.getTrack()] = in.get~otion(); 1/Save the motion paramter
active.insert(in.getTracko); // Add an active element
out.setMotion(in.get~otiono); IINotify as to object motion
out.set(in.getTracko), in.getForce()) // Provide force tracking

// node:addTrack[AddTrack:in] [AddTrack:out]

node:changeTrack[ChangeTrack:in) [ChangeTrack:out=> (parent;)]
// node:changeTrack[ChangeTrack:in] [ChangeTrack:out]

tracks[in.getTrack] = in.get~otiono; // Save the motion paramter
out.setmotion(in.get~otionVo); /1Notify as to object motion
out.set(in.getTrack(), in.getForce()); // Provide force tracking

// node:changeTrack[ChangeTrack:in [ChangeTrack:out]

node:loseTrack[LoseTrack:in] [LoseTrack:out=> (parent;)]
// node:loseTrack[LoseTrack:in] [LoseTrack:out]

active.erase(in.getTrackofl; IITrack is no longer active
out.set(in.getTrack(),in.getForce()); IIProvide force information

I/ node:loseTrack[LoseTrack:in] [LoseTrack:out]

node: impact [Impact: in] // We've been hit
[Destroyed:out[], /1Notify processes of our destruction
LoseTrack:lt[1=>(parent;), // Lost all the tracks
SetNewtonian~otion:snm[]] IINotify of new newtonian motion

{ // node:impact[Impact:in] [Destroyed:out[]]
nm.la(0.0, 0.0, 0.0, getTime)(); IIStop linear acceleration
nm.lv(0.0, 0.0, 0.0, getTimeo); // Stop linear motion
nm.aa(0.0, 0.0, 0.0, getTimeo); IIStop angular acceleration
nm.av(0.0, 0.0, 0.0, getTimeo); // Stop angular motion
notify(snm); // Notify views/environments about new newtonian motion

std::map<process, gvm::object index>::iterator i; // For loop index
for (i=views.begin(); i!=views.end(); ++i) /1Loop over index map

out.push -back(me); /1Allocate a new message
out.back().addDest(i->first); /1Add this view as a destination
out.back().index = i->second; // Specify the index

I // for (i=views.beginoi; i!=views.end(); ++i)

if (envlndex (= ((ulong) -1)) // If we have registered with environment

out.push back(me); IIAllocate a new message
out.back().addDest~environment); /1Add environment as dest
out.backro.addDest(parent); IIAdd environment as dest
out.back().index = envlndex; // Specify the index

Iif (envlndex != ((ulong) -1))

std::set<ulong>::iterator t; // Index for active tracks
for (t=active.begino; t!=active.end(); ++t) // Loop over active tracks

lt.pushback(me); IICreate a new LoseTrack message
lt.back().set(*t, (force==RED ? BLUE :RED)); // tell of lost tracks

Ifor (t=active.begin(); t!=active.end(); ++t)
} II node:impact[Impact:in] [Destroyed:out[]]

// mode:Default
Iprocess: SensorTrack (Newtonian~otion)

C.1 .86. sptlsptAngularMotion.cxx

IsptAngular~otion.cxx - Class definition for the spt::Angular~otion class
II used to track objects.

#include "sptAngular~otion.h"

#define ENDTINE le307

namespace apt

387

// namespace spt

AngularMotion::AngularMotion(void)
p(O.0, 3), v(0.0, 3), a(0.0, 3), start(O.0), stop(END TIME)

{/ AngularMotion::AngularMotion(void)
I/ AngularMotion::AngularMotion(void)

void AngularMotion::setAM(const vertex& P, // New acceleration
const vertex& V, // New velocity
const vertex& A, // New position

double t) II Effective time of the position
// void AngularMotion::setAM(const vertex&, ...)

update(t); / Set the new effective time
p=fixOri(P); / Set the new position
v=V; // Set the new velocity
a=A; // Set the new acceleration

}I void AngularMotion::setAM(const vertex&,

void AngularMotion::setAM(const vertex& P, // New acceleration
const vertex& V, // New velocity
const vertex& A, // New position
double 1, // Effective time of the position
double u) // End time of motion

{I void AngularMotion::setAM(const vertex&, ...)
update(l,u); // Set the new effective time
p=fixOri(P); / Set the new position
v=V; // Set the new velocity
a=A; // Set the new acceleration

// void AngularMotion::setAM(const vertex&, ...)

void AngularMotion::ap(const vertex& P, double 1)
{/ void AngularMotion::ap(const vertex&, double)

update(l); I/ Set the new effective time
p=fixOri(P); // Set the new position

}/ void AngularMotion::ap(const vertex&, double)

void AngularMotion::ap(const vertex& P, double 1, double u)
// void AngularMotion::ap(const vertex&, double, double)

update(l,u); II Set the new effective time
p=fixOri(P); // Set the new position

II void AngularMotion::ap(const vertex&, double, double)

void AngularMotion::av(const vertex& V, double 1)
// void AngularMotion::av(const vertex&, double)

update(l); // Set the new effective time
v=V; // Set the new velocity

// void AngularMotion::av(const vertex&, double)

void AngularMotion::av(const vertex& V, double 1, double u)
// void AngularMotion::av(const vertex&, double, double)

update(l,u); I Set the new effective time
v=V; // Set the new velocity

II void AngularMotion::av(const vertex&, double, double)

void AngularMotion::aa(const vertex& A, double 1)
{/ void AngularMotion::aa(const vertex&, double)

update(l); // Set the new effective time
a=A; // Set the new acceleration

}/ void AngularMotion::aa(const vertex&, double)

void AngularMotion::aa(const vertex& A, double 1, double u)
// void AngularMotion::aa(const vertex&, double, double)

update(l,u); I Set the new effective time
a=A; // Set the new acceleration

// void AngularMotion::aa(const vertex&, double, double)

void AngularMotion::ap(double x, double y, double z, double 1)
// void AngularMotion::ap(double, double, double, double)

update(l); // Set the new effective time
p[0]=x; p[l]=y; p[2]=z; // Set the new position
p=fixOri(p); // Ensure that things are in the proper ranges

}/ void AngularMotion::ap(double, double, double, double)

388

void AngularMotion::ap(double x, double y, double z, double 1, double u)
// void AngularMotion::ap(double, double, double, double, double)

update(l,u); // Set the new effective time
p[0]=x; p[l]=y; p[2]=z; // Set the new position
p=fixOri(p); // Ensure that things are in the proper ranges

// void AngularMotion::ap(double, double, double, double, double)

void AngularMotion::av(double x, double y, double z, double 1)
// void AngularMotion::av(double, double, double, double)

update(l); // Set the new effective time
v[0]=x; v[l]=y; v[2]=z; // Set the new velocity

// void AngularMotion::av(double, double, double, double)

void AngularMotion::av(double x, double y, double z, double 1, double u)
// void AngularMotion::av(double, double, double, double, double)

update(l,u); // Set the new effective time
v[0]=x; v[l]=y; v[2]=z; // Set the new velocity

// void AngularMotion::av(double, double, double, double, double)

void AngularMotion::aa(double x, double y, double z, double 1)
// void AngularMotion::aa(double, double, double, double)

update(l); // Set the new effective time
a[0]=x; a[l]=y; a[2]=z; // Set the new position

// void AngularMotion::aa(double, double, double, double)

void AngularMotion::aa(double x, double y, double z, double 1, double u)
// void AngularMotion::aa(double, double, double, double, double)

update(l,u); / Set the new effective time
a[0]=x; afl]=y; a[2]=z; // Set the new position

// void AngularMotion::aa(double, double, double, double, double)

vertex AngularMotion::ap(double t)
// vertex AngularMotion::ap(double)

double dt = (min(t,stop)-start); // Get the time difference
return fixOri(vertex(p+(v+0.5*a*dt)*dt)); // Get position

// vertex AngularMotion::ap(double)

vertex AngularMotion::av(double t)
// vertex AngularMotion::av(double)

double dt = (min(t,stop)-start); // Get the time difference
return vertex(v+a*dt); // Get the current velocity

// vertex AngularMotion::av(double)

vertex AngularMotion::aa(double t)
// vertex AngularMotion::aa(double)

return a; // Return the current acceleration
}/ vertex AngularMotion::aa(double)

void AngularMotion::update(double 1) // Update to new time, 1
{/ void AngularMotion::update(double)

if (1>ENDTIME) // If the start time is beyond the end time

std::cerr << "AngularMotion::update(" << 1 << ")" << std::endl;
std::cerr << "Start time reduced to " << END TIME << std::endl;
1 = ENDTIME;

}/ if (1>END TIME)
p = ap(l); // Get new position
v = av(l); // Get the new velocity vector
start 1; // Set the new effective time
stop ENDTIME; // Set the end time of this leg of movement

// void AngularMotion::update(double)

void AngularMotion::update(double 1, double u) // Update to new time, 1
// void AngularMotion::update(double, double)

if (l>u) // If start time is is beyond the end time

std::cerr << "AngularMotion::update(" << 1 << ", " << u << ")"

<< std::endl;
std::cerr << "Start time reduced to " << u << std::endl;

1 = u;

389

II if (l>u)
p = ap(l); // Get new position
v = av(l); // Get the new velocity vector
start = 1; // Set the new effective time
stop u; // Set the end time of this leg of movement

// void AngularMotion::update(double, double)

double AngularMotion::getStopTime(void)
// double AngularMotion::getStopTime(void)

return stop; // Return the value to the calling routine
}I double AngularMotion::getStopTime(void)

double AngularMotion::getStartTime(void)
// double AngularMotion::getStartTime(void)

return start; // Return the value to the calling routine
// double AngularMotion::getStartTime(void)

void AngularMotion::setStopTime(double t) // Update stop time
// void AngularMotion::setStopTime(double)

stop = t; // Set new stop time
}/ void AngularMotion::setStopTime(double)

double AngularMotion::angDiff(double tl, double t2)
// double AngularMotion::angDiff(double, double)

double rv = fixOri(tl)-fixOri(t2); // Get difference
if (rv<=-PI) rv+=2.0*PI; // Correct to one side
else if (rv>=PI) rv-=2.0*PI; // Correct to the other
return rv; // Return the value to the calling routine

}/ double AngularMotion::angDiff(double, double)

double AngularMotion::fixOri(double a) // Angle to fix
// double AngularMotion::fixOri(double)

a = fmod(a, 2.0*PI); if (a<0.0) a+=2.0*PI; // Get in range [0, 2*PI)
return a; // Return the fixed value

// double AngularMotion::fixOri(double)

vertex AngularMotion::fixOri(vertex o)
// vertex AngularMotion::fixOri(vertex)

for (ulong i=0; i<o.size(); ++i) o[i]=fixOri(o[i]); // Fix each one
return o; // Return the adjusted orientation array

I/ vertex AngularMotion::fixOri(vertex)
// namespace spt

C.1.87. sptlsptDefs.h

// sptDefs.h - Some spt namespace definitions

#ifndef SPTDEFS H INCLUDED
#define SPTDEFSHINCLUDED

#include <valarray>

namespace spt
// namespace spt

typedef std::valarray<double> vertex; // TO make life a little easier
II namespace spt

#endif

C.1.88. sptlsptlDefs.cxx

// sptDefs.cxx - Some simple definitions

#include "sptDefs.h"

namespace spt
{/ namespace spt

390

// namespace spt

C.1.89. sptlsptEnvironmentObject.h

// sptEnvironmentObject.h - Class declaration for the spt::EnvironmentObject
// class used to sense and track objects within an
// environment. It's part of namespace spt (short for
/ 'support').

#ifndef SPTENVIRONMENTOBJECTHINCLUDED
#define SPTENVIRONMENTOBJECTHINCLUDED

#include "sptNewtonianMotion.h"
#include <string>

#define UNKNOWN 0
#define NEUTRAL 1
#define RED 2
#define BLUE 3

namespace spt
{/ namespace spt

class EnvironmentObject public NewtonianMotion
{/ class EnvironmentObject public NewtonianMotion

protected:
ulong force; I/ Force to which this track belongs
double radius; // Radius of sensing capability

public:
EnvironmentObject(void); II Default class constructor
EnvironmentObject(ulong, double); // Class constructor
virtual double rad(void); II Get the sensor radius
virtual ulong iff(void); I/ Friend/Foe identifier

1; // class EnvironmentObject : public NewtonianMotion
// namespace spt

extern std::string forceString(ulong);

#endif

C.1.90. sptlsptEnvironmentObject.cxx

// sptEnvironmentObject.cxx - Class definition for the spt::EnvironmentObject
// class used to sense objects.

#include "sptEnvironmentObject.h"

namespace spt
{I namespace spt

EnvironmentObject::EnvironmentObject(void)
force(UNKNOWN), radius(0.0)

{I EnvironmentObject::EnvironmentObject(void)
}/ EnvironmentObject::EnvironmentObject(void)

EnvironmentObject::EnvironmentObject(ulong f, double r)
force(f), radius(r)

// EnvironmentObject::EnvironmentObject(ulong, double)
}/ EnvironmentObject::EnvironmentObject(ulong, double)

double EnvironmentObject::rad(void)
II double EnvironmentObject::rad(void)

return radius; // Return the sensor radius
// double EnvironmentObject::rad(void)

ulong EnvironmentObject::iff(void)
// ulong EnvironmentObject::iff(void)

return force; // Return the force identifier

391

// ulong EnvironmentObject::iff(void)
}/ namespace spt

std::string forceString(ulong i)
return i==l ? "NEUTRAL" : i==2 ? "RED" : i==3 ? "BLUE" : "UNKNOWN";

C.1.91. sptlsptLinearMotion.h

// sptLinearMotion.h - Class declaration for the spt::LinearMotion class used
// to move objects in a simulation. It's part of the spt
// (short for 'support') namespace.

#ifndef SPTLINEARI OTIONIINCLUDED
#define SPTLINEARMOTION H INCLUDED

#include "sptDefs.h"
#include "Trace.h"

namespace spt
{/ namespace spt

class LinearMotion public sodl::Trace
// class LinearMotion : public sodl::Trace

protected:
vertex p; II Linear position vector
vertex v; // Linear velocity vector
vertex a; // Linear acceleration vector
double start; // Effective time of the linear motion paramters
double stop; // Boundary of movement

public:
LinearMotion(void); // Default class constructor

virtual void setLM(const vertex&, const vertex&, const vertex&, double);
virtual void setLM(const vertex&, const vertex&, const vertex&, double,

double);
virtual void lp(const vertex&, double); // Set pos
virtual void lv(const vertex&, double); // Set vel
virtual void la(const vertex&, double); I/ Set acc
virtual void lp(const vertex&, double, double); // Set pos
virtual void lv(const vertex&, double, double); I/ Set vel
virtual void la(const vertex&, double, double); // Set acc
virtual void lp(double, double, double, double); // Set pos
virtual void lv(double, double, double, double); // Set vel
virtual void la(double, double, double, double); // Set acc
virtual void lp(double, double, double, double, double); // Set pos
virtual void lv(double, double, double, double, double); // Set vel
virtual void la(double, double, double, double, double); // Set acc

virtual vertex lp(double); // Get the position
virtual vertex lv(double); // Get the velocity
virtual vertex la(double); // Get the acceleration
virtual void update(double); // Update motion to time t
virtual void update(double, double); // Update motion to time t
virtual double getStopTime(void); // Get the stop time
virtual double getStartTime(void); // Get the start time
virtual void setStopTime(double); // Set the stop time

}/ class LinearMotion : public sodl::Trace
II namespace spt

#endif

C.1.92. spt/sptLinearMotion.cxx

// sptLinearMotion.cxx - Class definition for the spt::LinearMotion class used
// to track objects.

#include "sptLinearMotion.h"

392

#define ENDTIME 2e307

namespace spt
{/ namespace spt

LinearMotion::LinearMotion(void)
p(0.0, 3), v(0.0, 3), a(0.0, 3), start(0.0), stop(END TIME)

{/ LinearMotion::LinearMotion(void)
// LinearMotion::LinearMotion(void)

void LinearMotion::setLM(const vertex& P, N/ Mew acceleration
const vertex& V, II New velocity
const vertex& A, // New position
double 1) // Effective time of the position

{/ void LinearMotion::setLM(const vertex&, ...)
update(l); I/ Set the new effective time
p=P; // Set the new position
v=V; // Set the new velocity
a=A; // Set the new acceleration

}/ void LinearMotion::setLM(const vertex&, ...)

void LinearMotion::setLM(const vertex& P, // New acceleration
const vertex& V, // New velocity
const vertex& A, II New position
double 1, I/ Effective time of the position
double u) // Upper bound of time in motion

{I void LinearMotion::setLM(const vertex&, ...)
update(l,u); / Set the new effective time
p=P; // Set the new position
v=V; // Set the new velocity
a=A; // Set the new acceleration

}/ void LinearMotion::setLM(const vertex&, ...

void LinearMotion::lp(double x, double y, double z, double 1)
// void LinearMotion::lp(double, double, double, double)

update(l); // Set the new effective time
p[0]=x; p[l]=y; p[2]=z; // Set the new position

// void LinearMotion::lp(double, double, double, double)

void LinearMotion::lp(double x, double y, double z, double 1, double u)
// void LinearMotion::lp(double, double, double, double, double)

update(l,u); I Set the new effective time
p[0]=x; p[l]=y; p[2]=z; // Set the new position

// void LinearMotion::lp(double, double, double, double, double)

void LinearMotion::lv(double x, double y, double z, double 1)
// void LinearMotion::lv(double, double, double, double)

update(l); // Set the new effective time
v[0]=x; v[l]=y; v[2]=z; // Set the new velocity

// void LinearMotion::lv(double, double, double, double)

void LinearMotion::lv(double x, double y, double z, double 1, double u)
// void LinearMotion::lv(double, double, double, double, double)

update(l,u); I Set the new effective time
v[0]=x; v[l]=y; v[2]=z; // Set the new velocity

// void LinearMotion::lv(double, double, double, double, double)

void LinearMotion::la(double x, double y, double z, double 1)
// void LinearMotion::la(double, double, double, double)

update(l); // Set the new effective time
a[0]=x; a[l]=y; a[2]=z; // Set the new position

// void LinearMotion::la(double, double, double, double)

void LinearMotion::la(double x, double y, double z, double 1, double u)
// void LinearMotion::la(double, double, double, double, double)

update(l,u); / Set the new effective time
a[0]=x; a[l]=y; a[2]=z; // Set the new position

// void LinearMotion::la(double, double, double, double, double)

void LinearMotion::lp(const vertex& P, double 1)
// void LinearMotion::lp(const vertex&, double)

393

update(1); // Set the new effective time
p=P; // Set the new position

// void LinearMotion::lp(const vertex&, double)

void LinearMotion::lp(const vertex& P, double 1, double u)
{/ void LinearMotion::lp(const vertex&, double, double)

update(l,u); / Set the new effective time
p=P; // Set the new position

}I void LinearMotion::lp(const vertex&, double, double)

void LinearMotion::lv(const vertex& V, double 1)
{/ void LinearMotion::lv(const vertex&, double)

update(l); // Set the new effective time
v=V; // Set the new velocity

}/ void LinearMotion::lv(const vertex&, double)

void LinearMotion::lv(const vertex& V, double 1, double u)
{I void LinearMotion::lv(const vertex&, double, double)

update(l,u); II Set the new effective time
v=V; // Set the new velocity

// void LinearMotion::lv(const vertex&, double, double)

void LinearMotion::la(const vertex& A, double 1)
{/ void LinearMotion::la(const vertex&, double)

update(l); II Set the new effective time
a=A; // Set the new acceleration

}/ void LinearMotion::la(const vertex&, double)

void LinearMotion::la(const vertex& A, double 1, double u)
{/ void LinearMotion::la(const vertex&, double, double)

update(l,u); // Set the new effective time
a=A; // Set the new acceleration

}/ void LinearMotion::la(const vertex&, double, double)

vertex LinearMotion::lp(double t)
{/ vertex LinearMotion::lp(double)

double dt = min(t,stop)-start; // Get the time difference
return vertex(p+(v+0.5*a*dt)*dt); // Get current position

}/ vertex LinearMotion::lp(double)

vertex LinearMotion::lv(double t)
{/ vertex LinearMotion::lv(double)

double dt = min(t,stop)-start; // Get the time difference
return vertex(v+a*dt); // Get the current velocity

// vertex LinearMotion::lv(double)

vertex LinearMotion::la(double t)
{/ vertex LinearMotion::la(double)

return a; // Return the current acceleration
1/ vertex LinearMotion::la(double)

void LinearMotion::update(double 1) // Update to new time, 1
{/ void LinearMotion::update(double)

if (1>ENDTIME) // If the start time is beyond the end time

std::cerr << "LinearMotion::update(" << 1 << ")" << std::endl;
std::cerr << "Start time reduced to " << ENDTIME << std::endl;
1 = ENDTIME;

}/ if (I>END_TIME)
p = lp(l); // Get new position
v = lv(l); // Get the new velocity vector
start = 1; // Set the new effective time
stop = ENDTIME; // Set the end time of this leg of movement

// void LinearMotion::update(double)

void LinearMotion::update(double 1, double u) // Update to new time, 1
{I void LinearMotion::update(double, double)

if (l>u) // If start time is is beyond the end time

std::cerr << "LinearMotion::update(" << 1 << ", " << u <<

<< std::endl;

394

std::cerr << "Start time reduced to " << u << std::endl;
1 = u;

} // if (l>u)
p = lp(l); II Get new position
v = lv(l); // Get the new velocity vector
start = 1; // Set the new effective time
stop = u; // Set the end time of this leg of movement

// void LinearMotion::update(double, double)

double LinearMotion::getStopTime(void)
// double LinearMotion::getStopTime(void)

return stop; // Return the value to the calling routine
// double LinearMotion::getStopTime(void)

double LinearMotion::getStartTime(void)
II double LinearMotion::getStartTime(void)

return start; // Return the value to the calling routine
// double LinearMotion::getStartTime(void)

void LinearMotion::setStopTime(double t) // Update stop time
// void LinearMotion::setStopTime(double)

stop = t; // Set new stop time
// void LinearMotion::setStopTime(double)

// namespace spt

C.1.93. sptlsptNewtonianMotion.h

// sptNewtonianMotion.h - Class declaration for the spt::NewtonianMotion class
// used to move objects in a simulation. It's part of
// the spt (short for 'support') namespace.

#ifndef SPTNEWTONIANMOTION_H_INCLUDED
#define SPTNEWTONIANMOTION_HINCLUDED

#include "sptAngularMotion.h"
#include "sptLinearMotion.h"

namespace spt
// namespace spt

class NewtonianMotion : public AngularMotion, public LinearMotion
// class NewtonianMotion : public AngularMotion, public LinearMotion

public:
NewtonianMotion(void); // Default class constructor
virtual void set(const vertex&, const vertex&, const vertex&,

const vertex&, const vertex&, const vertex&, double);

virtual void set(const vertex&, const vertex&, const vertex&,
const vertex&, const vertex&, const vertex&, double,
double);

virtual void update(double); // Update motion params to time t
virtual void update(double, double); // Update motion params to time t
virtual double getStopTime(void); // Get the stop time
virtual double getStartTime(void); I/ Get the start time
virtual void setStopTime(double); // Set the stop time

; class NewtonianMotion : public AngularMotion, public LinearMotion
// namespace spt

#endif

C.1.94. spt/sptNewtonianMotion.cxx

// sptNewtonianMotion.cxx - Class definition for the spt::NewtonianMotion
// class used to track objects.

#include "sptNewtonianMotion.h"

395

namespace spt
{/ namespace spt

NewtonianMotion::NewtonianMotion(void)
{/ NewtonianMotion::NewtonianMotion(void)
// NewtonianMotion::NewtonianMotion(void)

void NewtonianMotion::set(const vertex& LP, // New lin acc
const vertex& LV, // New lin vel
const vertex& LA, // New lin pos
const vertex& AP , // New ang acc
const vertex& AV, // New ang vel
const vertex& AA, // New ang pos
double 1) // Effective time of the position

// void NewtonianMotion::set(const vertex&, ...)
update(l); // Update to the current motion parameters
LinearMotion::p=LP; // Set the new position
LinearMotion::v=LV; // Set the new velocity
LinearMotion::a=LA; // Set the new acceleration
AngularMotion::p=fixOri(AP); // Set the new angular position
AngularMotion::a=AA; // Set the new angular acceleration
AngularMotion::v=AV;, // Set the new angular velocity

// void NewtonianMotion::set(const vertex&, ...)

void NewtonianMotion::set(const vertex& LP, // New lin acc
const vertex& LV, // New lin vel

const vertex& LA, // New lin pos
const vertex& AP, // New ang acc
const vertex& AV, // New ang vel
const vertex& AA, // New ang pos
double 1, double u) // Effective motion times

// void NewtonianMotion::set(const vertex&, ...)
update(l,u); // Update to the current motion parameters
LinearMotion::p=LP; // Set the new position
LinearMotion: :v=LV; // Set the new velocity
LinearMotion::a=LA; // Set the new acceleration
AngularMotion::p=fixOri(AP); // Set the new angular position
AngularMotion::a=AA; // Set the new angular acceleration
AngularMotion::v=AV; // Set the new angular velocity

// void NewtonianMotion::set(const vertex&, ...)

void NewtonianMotion::update(double 1) // Update to new time, t
// void NewtonianMotion::update(double)

LinearMotion::update(l); // Set new effective time for linear motion
AngularMotion::update(l); // Set new effective time for angular motion

// void NewtonianMotion::update(double)

void NewtonianMotion::update(double 1, double u) // Update to new time, 1
// void NewtonianMotion::update(double)

LinearMotion::update(l,u); // Set new effective time for linear motion
AngularMotion::update(l,u); // Set new effective time for angular motion

// void NewtonianMotion::update(double)

double NewtonianMotion::getStopTime(void)
// double NewtonianMotion::getStopTime(void)

return min(LinearMotion::getStopTime(), AngularMotion::getStopTime));
// double NewtonianMotion::getStopTime(void)

double NewtonianMotion::getStartTime(void)
// double NewtonianMotion::getStartTime(void)

return max(LinearMotion::getStartTime(), AngularMotion::getStartTime());
// double NewtonianMotion::getStartTime(void)

void NewtonianMotion::setStopTime(double t) // Update stop time
// void NewtonianMotion::setStopTime(double)

LinearMotion::setStopTime(t); // Set new stop time for linear motion
AngularMotion::setStopTime(t); // Set new stop time for angular motion

// void NewtonianMotion::setStopTime(double)
// namespace spt

396

C.2. Bounce 1

C.2-. bounce.proc
{import process {View3D, Node3D, Cube, Polygon3D, particle)
{import message {start, grupdate, AddNode3D, AddShape3D,

SetColor, SetMode, SetPosition, SetSize,
SetCubeSize, SetRefresh, set system, SetPointSize,
StartSimulation)

{import {<stdlib.h>, <time.h>, <GL/glut.h>}
{import std {<iostream>j}

process :bounce

double:interval(0.025); IIInterval between updates
particle:b[200); //Collection of bouncing particles
View3D view; IIDisplay to this view
Node3D: systemNode; IINode for the display
Polygon3D:system; 1/Place where the points are stored
Cube:cube; 1/Cube for surrounding the collection of points

mode: Default
/mode:Default

node:start sim[StartSimulation:strt] 1/Initial Start message
[start:s=>(b;) :(0.0), IITransmit start to particles
set system:setSystem=>(b;), // Set parent system
AddNode3D:an=> (view;), /1Add system node to view
AddShape3D:as=>(systemNode;), //Add shape to node
SetColor:scSystemn=>(system;), 1/Set system color
SetColor:scCube=>(cube;), IISet cube color
Set~ode:smSystem=>(system;), IISet system mode
SetMode:smCube=>(cube;), // Set cube mode
SetPosition:sp=> (view;): (0.0), IISet view position
SetSize:ss=>(view;):(0.0), // Set view size
SetRefresh:sr=>(view;), 1/Set refresh rate
SetCubeSize:scs=>(cube;), /1set cube size
grupdate:up=>(me;b;) :(interval-le-9), // Update #1
SetPointSize:sps=>(view;)] IISet point size

{ // node:start sim[StartSimulation:strt] [start:s, ..]
sr.set(interval); // Set the refresh interval
setSystem.system = system; /1Set the system for the particles
an.add(systemNode); // Main node to add to the view
as-add(system); IISystem of particles to add to node
as.add~cube); 1/Cube exterior to the particle system
scSystem.set(0.0, 1.0, 1.0); 1/Set system color to cyan
scCube.set(0.0, 1.0, 0.0); 1/Set cube color to green
smSystem.gr mnode =smCube.gr-mode =GLPOINTS; // Rendering mode
sp.set(50, 50); 1/Set the position of the view
ss.set(800,600); /1Set the size of the window
scs.size =20.0; IISet the size of the cube
sps.size = 3.0; // Specify the point size

Inode:start-sim[StartSimulation~strt) [start:s,..

node :update [gr update: in)
[grupdate:out=>(me; b;) :(getTimeo(-iinterval)]

/mode:Default
1 /1 process:bounce

C.2.2. grupdate.msg
{message:gr_update;)

C.2.3. hit.msg

message :hit

397

// message:hit
int:axis; // Axis associated with the hit event

}/ message:hit

C.2.4. particle.proc
{import message {hit, start, grupdate, set system, SetVertex3D,

AddVertex3D} I
{import process {Node3D, Vertex3D(I
{import std {<vector>))
{import {"Exception.h"(I

process:particle

Vertex3D:vrt; // Screen vertex
double:pos[3]; // Position vector
double:vel[3]; I/ Velocity vector
double:nextTime[3]; // Next impact times for each axis
double:time(0.0); // Time for the last velocity change
sodl::Defs::MessageType:lm(SMTLAST); // Last message type

method:init(public; void;)
{I/ method:init(public; void;)

for (uint i=0; i<3; ++i) 1/ Loop over each of the coordinates
p
pos[i] = random.nextDouble(-10.0, 10.0); // Assign position
vel[i] = random.nextDouble(-10.0, 10.0); //Assign position

setNextHitTime(i); // Set time for next impact along axis i
I // for (int i=0; i<3; ++i)

II method:init(public; void;)

method:setNextHitTime(private; void; int:i;)
// method:setNextHitTime(private; void; int:i;)

if (vel[i]<0.0) nextTime[i] = time-(10.0+pos[i])/vel[i];
else if (vel[i]>0.0) nextTime[i] = time+(10.0-pos[i])/vel[i];
else nextTime[i]=getEngine().getClock().getEndTime(); // vel[i]==0

// method:setNextHitTime(private; void; int:i;)

method:move(private; void;)
// method:move(private; void; double time)

double dt = getTime(-time; // Delta time
for (uint i=0; i<3; ++i) pos[i] += dt*vel[i]; // Update position
time = getTime(); // Update the time

// method:move(private; void; double time)

method:getMinAxis(private; int;)
// method:getMinAxis(private; int;)

int axis 0; // Initialize the axis value

for (uint i=l; i<nextTime.size(); ++i) // Loop over the axes
if (nextTime[axis]>nextTime[i]) axis=i; // Get min time

return axis; // Return that axis value
// method:getMinAxis(private; int;)

mode:Default
{/ mode:Default

node:setSystem[set system:in] [AddVertex3D:av=>(in.system;)]
// node:setSystem[set-system:in] [AddVertex3D:out]

im = in.getType((;
av.add(vrt); // Add the vertex to the system

// node:setSystem[set system:in] [AddVertex3D:out]

node:start sim[start:s]
[hit:out=>(me;):(nextTime[out.axis])]

{ / node:start sim[start:s] [hit:out=>(me;)]
im = s.getType();
out.axis = getMinAxis(); // Axis for the impact

} // node:start sim[start:s] [hit:out=>(me;)]

398

node:update[grupdate:in] [SetVertex3D:out=>(vrt;)]
/node:update[gr update:in] [SetVertex3D:out]

lm = in.getTypeo;
move)); IIMove the particle to the current position
out.set(pos); // Update the vertex position

1node:update[gr update:in] [SetVertex3D:out]

node: change [hit: inj
[hit:out=>)me;) : nextTimefout.axisl)]

II node:change[hit:in] [hit:out=>(me;)]
lm = in.getType();
move)); //Move the particle to the current position
vel[in.axis] = -vel[in.axis]; // Change the velocity
setNextHitTime(in.axis); IISet next hit time for specified axis
out.axis =getMinAxiso; // Axis for the impact

I/ node:change[hit:in] [hit:out=>(me;)]
// mode:Default

/process:particle

C.2.5. set system.mg

message: set system
II message:set system

pcocess:system; //System to which particles will be added
I/ message:set system

C.2.6. start.mg
I messago:start; I

CA3 Bounce2

C.3.1. bounce.proc
{import process {bounce-view, Node3D, Cube, Polygon3D, particle)
{import message {AddNode3D, AddShape3D, SetColor, SetMode, SetSize,

SetPosition, SetCubeSize, SetRefresh, SetPointSize,
StartSimulation, AddVertex3D}

{import {<stdlib.h>, <time.h>, <GL/glut.h>)I
fimport std {<iostream>}}

process :bounce

particle:b[2000]; IICollection of bouncing particles
bounce-view:view; 1/Display to this view
Node3D: system~ode; N1 ode for the display
Polygon3D:system; IIPlace where the points are stored
Cube:cube; /1Cube for surrounding the collection of points

mode: Default
Imode:Default

node:start sim[StartSimulation:strt] / Initial start message
[AddNode3D:an=> [view;), /1Add system node to view
AddShape3D:as=>(system~ode;), //Add shape to node
AddVertex3D:av=>(system;), 1/Add vert to system
SetColor:scSystem=>(system;), //Set system color
SetColor:scCube=>(cube;), // Set cube color
SetMode:smSystem=>(system;), //Set the system mode
SetMode:smCube=>(cube;), ' / Set the cube mode
SetPosition:sp=> (view;), IISet the view position
SetSize:ss=>(view;), // Set the view size
SetRefresh:sr=>(view;), /1Set the refresh rate
SetCubeSize:scs=>(cube;), /1Set the cube size
SetPointSize:sps=>)view;)] //Set the point size

/node:start sim[StartSimulation:strt] [start:s,

399

an.add(systemNode); MIi'ain node to add to the view
as.add(system); IISystem of particles to add to node
as.add~cube); /1Cube exterior to the particle system
for (uint i=0; i<b.size)); ++i) av.add(b[i]); //Add particles
scSystem.set(0.0, 1.0, 1.0); IISet system color to cyan
scCube.set(0.0, 1.0, 0.0); 1/Set cube color to green
smSystem.gr mode=smCube.grmiode=GL_POINTS; // Rendering mode
sp.set(50, 50O); //Set the position of the view
ss.set (800,600); IISet the size of the window
sr.set(O.025);/ Set the refresh interval
scs.size = 20.0; IISet the size of the cube
sps.size =3.0; // Specify the point size

1node:start sim[StartSimulation:strt] [stert:s, ... I
// mode:Default
Iprocess:bounce

C.3.2. bounce -view.proc
{import process {View3D)I
{import message {set -motioni
(import gym {gvmBounceView, gvmParticle, gvmSetMotion}

process: bounce view)View3D)

mehdiifpbi;vi;
/1 methodninitupublic;vvoid;

view = new gvm::BounceView; // Create a new view
dynamic_cast<GLOTViewMenager&>)*EngineStend: :stand.vm).

addView~view);
/method:init~public; void;)

method:getGVMType~protected; gym: :object type; ptype:t;)
// method:getGVMType~protected; gvm::object type; ptype;)

switch)t) 1/Which one is it?

case SPT particle: return gvm::GVM_-Particle;
default: return View3D: :getGVMType~t);

// switch~t)
Imethod:getGVMType~protected; gvm::object type; ptype;)

mode: Default
Imode:Default

node:setMotion[set motion:in] [I
// node:setmotion[set motion:in] []

view->schedule~new gym: :SetMotion)*view, getTime)), in.index,
in.getT)),in.getP)), in.getV))
in.getAo));

/node:setmotion[set motion:in] []
/mode:Default

C.3.3. hit.msg

message: hit
Imessage:hit

int:axis; IIAxis associated with the hit event
/message:hit

C.3.4. particle.proc
{import message {hit, set motion, SetVertex3D, StartSimulation,

AddVertex3D, AddView} I
{import process {Vertex3D} I
{import std {<vector>I)
{import {"Exception.h})

400

process:particle (Vertex3D)

double:vel[3] I Velocity vector
double:acc[3]; //Acceleration vector
double:nextTime[3]; IINext impact times for each axis
double:time(0.0); 1/Time for the last velocity change

method:init (public; void;)
// method:init~public; void;)

for)uint i=0; i<3; ++i) //Loop over each of the coordinates

pos[i] = random.nextDouble)-l0.0, 10.0); IIAssign position
vel[i] = random.nextDouble)-10.0, 10.0); IIAssign velocity
acc[i] = (i==2) ? -9.8 :0.0; IIInitialize acceleration
setNextHitTime~i); IISet time for next impact along axis i

// for (mnt i=0; i<3; ++i)
Imethod:init(public; void;)

method: setNextHitTime (private; void; mnt :i;)
// method:setNext~itTime~private; void; int:i;)

static double et =getEngine)). getClocko). getEndTime));
static double s 10.0;

if (acc~il ! 0.0) 1/If there is non-zero acceleration

double a =acc[i]/2.0;

double a2 =acc[i];

double b =vel[i];

double bs =b*b;

double c =pos[i];

double pd = bs-~4.0*)c-s)*a; /1Discriminant 1
double nd =bs-4.0*)c+s)*a; /1Discriminant 2
double psr =)pd>=0.0) ? sqrt~pd) :-1.0;
double nsr = (nd>=0.0) ? sqrt~nd) :-1.0;
double pt =)pd>0.0) ? min))-b+psr)/a2,)-b-psr)/a2) :et;
double nt =)nd>0.0) ? max))-b+nsr)/a2,)-b-nsr)/a2) :et;
if)pt<0.0 && nt<0.0)
throw Exception: :Nonspecific ("Bounce fault");

else if)pt<0.0 11 nt<0.0) nextTime[i] = time+max~pt, nt);
else nextTime[i]=time+min~pt, nt); IIIt should hit one wall

// if)acc[i] != 0.0)
else if)vel[i]<0.0) nextTime[i] = time-)10.0+pos[iD)/vel[i];
else if)vel[i)>0.0) nextTime[i) = time+)l0.0-pos[i])/vel[i];
else nextTime~i]=getEngine)).getClock)).getEndTime)); IIvel[i]==0

// method:setNextHitTime (private; void; int:i;)

method:move (private; void;)
// method:move~private; void; double time)

double dt =getTime))-time; // Delta time
double ddt =dt*dt; IIGet the delta time
for)uint i=0; i<3; ++i) IILoop over the axes

pos~il += dt*vel[i]+acc[i]*ddt*0.5; /1Get the current position
vel[i] += dt*acc[i]; IIGet the current velocity

1for)uint i=0; i<3; ++i)
time = getTime)); // Update the time

1method:move~private; void; double time)

method:getMinAxis (private; int;)
// method:getMinAxis (private; int;)

int axis = 0; IIInitialize the axis value

for)uint i=l; i<nextTime.size)); ++i) IILoop over the axes
if (nextTime[axis]>nextTimei) axis=i; // Get min time

return axis; //Return that axis value
Imethod:getminAxis (private; int;)

mode: Default
Imode:Default

401

node: start [StartSimulation: s]
[hit:out=>(me;):(nextTime[out.axis])]

// node:start[StartSimuiation:s])hit:out=> (me;)]
out.axis = getMinAxisLo; // Axis for the impact

// node:start[StartSimulation:s] [hit:out=> (me;)]

node:addView[AddView:in] [set motion:out=>(in.getSourceO;)]
// node:addView[AddView:in] [set motion:out=>(in.getSourceo;)]

out.set(time,pos,vei,acc); IISet parameters in new view
out.index =in.index; // Set the index value, too

Inode:addView[AddView:in] [set-motion:out=>(in-getSourceLo;)]

node: change [hit:in]
[hit:out=>(me;) :(nextTime[out.axis]),
set-motion:sm[l]

// node:change~hit:inh[hit:out=>(me;)]
move)); /1Move the particle to the current position
vel~in.axis] = -vel[in.axis]; // Change the velocity
setNextHitTime~in.axis); IISet next hit time for specified axis
out.axis = getMinAxis)); IIAxis for the impact

std::map<process, gvm::ohject_index>::iterator i; IIFor index
for~i=views.begin)); i!=views.end)); ++i) IILoop over index map

sm.pushback~me) ; IImake new msg
sm.back)).addDest~i->first); IIAdd a destination to it
sm.hack)).index =i->second; // Specify the index
sm.back)).set~getTime)),pos,vel,acc); // Specify motion

Ifor)i=views.hegin)); i!=views.end)); ++i)
1node:change[hit:in] [hit:out=>)me;)]

// mode:Default
/process:pacticle

C.3.5. set motion.mg
{import message {SetValue}
{import std {<vector>}

mesg:stmtinIe~le
II messageesatomotion)Setaalue

douhle :t; /1Effective time of these settings
double:a[3] ; //Acceleration to set
double:p[3] ; 1/Position to set
douhle:v[3]; //Velocity to set

method:set~puhlic; void; douhle:T; /1Effective time
std::vector<double>:P; 1/Position at T
std::vector<double>:V; /1Velocity at T
std::vector<double>:A;)// Acceleration at T

I/ method:set~puhlic; void; douhleT; ...

t=T; // Set the effective time
p=resize -vectoc)3, 0.0, P); /1Set the position at that time
v=resize -vector)3, 0.0, V); 1/Set the velocity at that time
a=resize-vector)3, 0.0, A); IISet the acceleration at that time

// method:set~puhlic; void; douhleT; ..)

method:getT~puhlic; double;) (return t; I // Get the effective time
method:getP~puhlic; std::vector<douhle>;))return p;) IGet pos
method:getV~puhlic; std::vector<double>;) {return v; } 1Get vel
method:getA~puhlic; std::vector<douhle>;) {return a; } IGet acc

Imessage:set motion)SetValue)

C.3.6. gvm/gvmBounceView.h
#ifndef GVMBOUNCEVIEWHINCLUDED
#define GVMBOUHCEVIEW-H-INCLUDED

#include "gvmView3D.h"

402

namespace gym
/namespace gym

class BounceView :public View3D
/class BounceView public View3D

public:
BounceView (void); CI lass constructor

virtual bool isDisplay(void); //Should we update the display?
virtual void createObject(object handle); // Create object to view

1class BounceView :public View3D
Inamespace gym

4fendif

C.3.7. gvm/gvmBounceView.cxx
#include <math.h>

#include 'Exception.h"
#include TlgvmBounceView.h'
#include 'gvmParticle.h"

namespace gym
/namespace gym

Bounce View: :BounceView (void)
/BounceView: :BounceView(void)

setTitle ("BounceView');
/BounceView: :BounceView(void)

bool BounceView: :isDisplay (void)
/bool BounceView: :isDisplay(void)

return (isVisible && refresh) ; // Should we redisplay
1bool BounceView: :isDisplay~void)

void BounceView: :createObject~object handle h)
// void BounceView: :createObject(object handle)

if (h.second >= objectList.size))) // Is this lined up properly
throw Exception: :Nonspecific("Object count mis-alignment.");

switch)h.first) 1/Which. Object should we create?

case GVM_-Particle: IIA new Particle instance requested
objectList[h.second] = new Particle(*this, h.second);
break; 1/case GVMParticle:

default: 1/None of the above
View3D::createObject(h); //Create a default object
break; // default

IIswitch (t)
Ivoid BounceView::createObject(object type, object_index)

Inamespace gym

C.3.8. gvm/gvm Particle. h
#ifndef GVMPARTICLEHNINCLUDED
#define GVMPARTICLENINCLUDED

#include <vector>
#include "gvmVertex3D.h"

#define GVNParticle GVM UserObjectoOD

namespace gym

class BounceView;

class Particle : public Vertex3D

protected:
double t;
std: :vector<double> pos;
std: :vector<double> vel;
std: :vector<double> arc;

403

protected:
Particle (gym: :BounceView&,object type,ulong); /class constructor

public:
Particle (gym: :BounceView&,ulong); IIClass constructor

virtual void setMotion(double, const std::vector<double>&,
const std: :vector<double>&,
const std: :vectorcdouble>&);

virtual void display (void); // Display the component
virtual bool isType(object type); IICheck if this is of type t

1; /1class Particle
Inamespace gym

#endif

C.3.9. gvm/gvmParticle.cxx
#include <iostream>
#include "gvmParticle .h
#include "gvmtounceView.h

namespace gym

Particle::Particlegvrn::BounceView& v, object type t, ulong i)
Vertex3D(v, t, i), t(0.0), pos(3,O.0), vel(3,0.0), acc(3,0.0)

//Particle: :Particle (gym: :BounceView&, object type, ulong)
/Particle: :Particle(gvm: :BounceView&, object type, ulong)

Particle::Particle~gvm::BounceView& v, ulong i)
Vertex3D(v,GVMParticle,i), t(0.0), pos(3,.O.), vel(3,0.0),
acc (3,0.0)

/Particle: :Particle(gvn: :BounceView&, ulong)
/Particle: :Particlegvn: :BounceView&, ulong)

void Particle: :setMotion~double T,
const std::vector<double>& P,
const std::vector<double>& V,
const std::vector<double>& A)

// void Particle::set(double,
t=T; 1/Set the effective time for the parameters
pos=P; IISet the position of the particle at the effective time
vel=V; IISet the velocity of the particle at the effective time
acc=A; IISet the acceleration of the particle at the effective time

Ivoid Particle::set~double,.

void Particle: :display (void)
/void Particle::display~void)

double dt = getView)).getTime))-t; /1Getdelta since last update
for)uint i=0; i<3; +±i) IILoop over each coordinate
loc[i]=pos[i]+(vel[il+0.5*acc[i)*dt)*dt; //Get new point location

Vertex3D: :display)); IIDisplay the vertex
Ivoid Particle::display~void)

bool Particle: :isType~object type c)
// bool Particle: :isType~object type)

return)c==GVM Particle 11) Vertex3D::isType~c)); // Return results
/bool Particle: :isType~object type)

} II namespace gym

C.3. 10. gvm/gvmSetMotion.h
#ifndef SETMOTION_H_INCLUDED
#define SETMOTIONNINCLUDED

#include "gvm~essage.h"
#include "gvmObject.h"

#define GVMSetMotion GVMUserMessageOOD

namespace gym

404

// namespace gvm
class View; // Forward declaration of the gvm::View class

class SetMotion : public Message
// class SetMotion : public Message

private:
double t; // Effective time stamp of the motion parameters
std::vector<GLdouble> p; // Position at time t
std::vector<GLdouble> v; // Velocity at time t
std::vector<GLdouble> a; // Acceleration at time t

public:
SetMotion(View&, double, object index, double,

std::vector<GLdouble>, std::vector<GLdouble>,
std::vector<GLdouble>);

virtual void send(void); // Deliver the message payload
}/ class SetMotion : public Message

}/ namespace gym
#endif

C.3.1 1. gvm/gvmSetMotion.cxx
#include "Exception.h"
#include "gvmParticle.h"
#include "gvmSetMotion.h"
#include "gvmView.h"

namespace gvm
// namespace gvm

SetMotion::SetMotion(View& v, // Parent (owning) view of this message
double t, // Time to process the message
object index i, // Destination object
double T, II Effective time of motion parameters
std::vector<GLdouble> P, // Position at time T
std::vector<GLdouble> V, II Velocity at time T
std::vector<GLdouble> A) I/ Acceleration at T

Message(v, t, GVM SetMotion, i), t(T), p(P), v(V), a(A)
{/ SetMotion::SetMotion(View&, double, object index,
// SetMotion::SetMotion(View&, double, object-index,

void SetMotion::send(void)
{/ void SetMotion::send(void)

gvm::Particle *part =

dynamic cast<gvm::Particle*>(&getView()[getDest)]);
if (part==NULL)
throw Exception::BadCast("gvm::Object", "gvm::Particle");

part->setMotion(t,p,v,a); 1/ Set motion parameters of destination
// void SetMotion::send(void)

}/ namespace gym

C.4. Brigade1

C.4.1. baftalion.proc
{import process {unit, company) I
{import message {StartSimulation, SetColor)

process:battalion(unit)
{ / process:battalion(unit)

company:subordinates[4]; // Subordinate objects

method:init(protected; void;)
{I/ method:init(protected; void;)
unit::inito; // Call parent class version
subs = subordinates; // Copy the subordinate handles
sub_labels.push back(" Alpha Company");
sublabels.push back(" Bravo Company");

405

sub_labels.push back(" Charlie Company");
sub_labels.pushback(" Delta Company");

// method:init(protected; void;)

C.4.2. brigade.proc
{import process {unit, battalion, View2D, Polygon2D, Vertex2D}
{import message {order, set parent, StartSimulation, SetColor,

AddVertex2D, SetVertex2D, AddNode2D, SetMode, SetSize,
SetPosition, SetRefresh I

{import std {<string>, <iostream>) I

process:brigade(unit)
f
battalion:subordinates[4]; // Subordinate battalions
View2D:view; // View where stuff is seen
Polygon2D:rect; // A rectangle everbody will reference
Vertex2D:vert[4]; // The vertices of the rectangle

method:init(protected; void;)
{/ method:init(protected; void;)

unit::inito); // Call parent class version
subs = subordinates; // Copy the subordinate handles
sub_labels.push back(" 1st Battalion");
sublabels.pushback(" 2nd Battalion");
sub_labels.pushback(" 3rd Battalion");
sub_labels.pushback(" 4th Battalion");

} // method:init(protected; void;)

method:getScale(public; std::vector<double>;)
f return makevector(2, 1.0, 1.0); }

method:getTranslation(public; std::vector<double>;)
f return makevector(2, 0.0, 0.0);

mode:start
{/ mode:start

node:start[StartSimulation:strt] // Initial message
[order:out=>(me;):(0.0), // Start sim at time 0
setparent:sp=>(me;), // Set subordinate parent handle
AddVertex2D:av=>(rect;), // Add vertex loc to shape
SetVertex2D:sv[4]=>(vert[@];), // Set vertex locations
AddNode2D:an=>(view;), // Add the node to the view
SetMode:sm=>(rect;), // Set the rectangle mode
SetSize:ss=>(view;), // Set window size
SetPosition:spos=>(view;), // Set window position
SetRefresh:srfsh=>(view;)) // Set refresh interval

// node:start[StartSimulation:strt] [...
sp.instance = 0; // Set the instance number
sp.label = "Brigade"; // Set this instance label
sp.parentnode = unit node; // Set the unit handle
sp.rect = rect; // Set the rectangle handle

sm.set(GLQUADS); // Filled rectangle

out.data = 5.0+random.nextDouble(5.0); II Generate data value

an.add(unit node); // Add brigade's node as root node in view

sv[0].set(-50.0, -0.5); /First vertex
sv[l].set(50.0, -0.5); /Second vertex
sv[2).set(50.0, 0.5); // Third vertex
sv[3].set(-50.0, 0.5); /Fourth vertex
for (int i=0; i<4; ++i) // Loop over the vertices
av.add(vert[i]); // Specify the vertices

ss.set(800,600); II Set the viewport size to 800x600
spos.set(100,100); II And positioned at (100,100)

406

srfsh.set(O.l); // Set it to refresh every 0.5 time unit
}/ node:start[StartSimulation:strt] [... I

// mode:start

C.4.3. company.proc
{import process {unit, platoon)
{import std {<string>, <iostream>} I
{import message {StartSimulation, SetColor)

process:company(unit)
{// process:company(unit)

platoon:subordinates[4];

method:init(protected; void;)
{I/ method:init(protected; void;)
unit::init(); // Call parent class version
subs = subordinates; // Copy the subordinate handles
sublabels.push back(" ist Platoon"); 1/ Subordinate label values
sublabels.push back(" 2nd Platoon");
sublabels.push back(" 3rd Platoon");
sub_labels.push back(" 4th Platoon");

} // method:init~protected; void;)

// process:company(unit)

C.4.4. order.msg

message:order

double:data(0.0);

C.4.5. platoon.proc
{import process (unit, squad)
{import std {<string>, <vector>, <iostream>} I
(import message {StartSimulation, SetColor)

process:platoon(unit)
{// process :platoon(unit)

squad:subordinates[4);

method:init(protected; void;)
fII method:init(protected; void;)
unit::inito; // Call parent class version
subs = subordinates; I/ Copy the subordinate handles
sublabels.push back(" Squad l"); // Subordinate label values
sublabels.push back(" Squad 2");
sub_labels.push back(" Squad 3");
sub_labels.push back(" Squad 4");

// method:init(protected; void;)
II process:platoon(unit)

C.4.6. report.msg

message:report
f
long:instance(O);

4

407

C.4.7. set-parent.msg
{import std {<string>} I

message:setparent
{// message:set parent

int:instance; // Subordinate instance number of the destination
std::string:label; // Label of the destination
process:parent node; // Node for the parent
process:rect; // Polygon for the figure to use

// message:setparent

C.4.8. soldier.proc
{import process {unit) I
{import message {order, report, SetColor, StartSimulation)
{import std {<string>, <iostream>} I

process:soldier(unit)
m
method:init(protected; void;)
{I/ method:init(protected; void;)

unit::init(); // Call parent class version
subs.pushback(me); I/ Copy the subordinate handles

}II method:init(protected; void;)

method:fossilCollect(protected; void;)
// method:statusReport(protected; void; sim:report&:in;)

if (getTime) >= 0.0) // If the timestamp is not negative

if (waiting for_orders.isActive)) // If waiting for orders

std::cout << getTime) << ":" << std::endl;
std::cout << getLabel() << " following orders:

<< sub times[0] << std::endl << std::endl;
// if (waiting for orders.isActive())

else // If it's anything else
unit::fossilCollect(); // Let the parent class take care of it

// if (getTime) >= 0.0)
}/ method:statusReport(protected; void; sim:report&:in;)

method:getScale(public; std::vector<double>;)
{ return make vector(2, 1.0, 1.0); 1

method:getTranslation(public; std::vector<double>;)
{ return makevector(2, 0.0, -(2.0+l.5*((float) instance))); I

mode:waitingfororders
// mode:waitingfororders

node:receive[order:ord] [report:out=>(me;):(subtimes[0])]
// node:receive[order:ord] [order:out[4]]

sub times.pushback(getTime()+random.nextDouble(ord.data));
}/ node:receive[order:ord] [order:out[4]]

}/ mode:waiting fororders
II process:soldier(unit)

C.4.9. squad.proc
{import process {unit, soldier) I
{import message {StartSimulation, SetColor)
{import std {<string>, <iostream>)

process:squad(unit)
I/ process:squad(unit)

soldier:subordinates[10];

408

method:init(protected; void;)
{/ method:init(protected; void;)

unit::init); // Call parent class version
subs = subordinates; // Copy the subordinates
sub_labels.pushback(" Leader"); I/ Subordinate label values
sub_labels.push back(" Radioman");
sublabels.push back(" Heavy gunner 1");
sub labels.push back(" Heavy gunner 2");
sublabels.push back(" Corpsman");
sublabels.push back(" Demolitionist");
sublabels.push back(" Infantryman 1");
sublabels.push back(" Infantryman 2");
sub_labels.push back(" Infantryman 3");
sub labels.push back(" Infantryman 4");

}I method:init(protected; void;)
// process:squad(unit)

C.4.10. unit.proc
(import process {Node2D} I
{import message {report, order, set parent, SetColor, AddShape2D,

AddNode2D, SetLabel, SetAffine2D, StartSimulation} I
(import std {<vector>, <iostream>, <string>}
{import {<stdlib.h>, <time.h>}

process:unit

int:instance; // Subordinate instance of this unit
int:unitsdone(0); // Is the entire unit done with it's task?
process:parent; // Parent unit
process:subs[]; // Handles to subordinate units
std::string:label(""); // Label for this unit
std::string:sub labels[]; // Labels for subordinate units
double:sub-times[]; // Timestamp for subordinate units
Node2D:unit node; // Graphics node for this unit

method:setLabel(protected; void; std::string:l;) { label = 1;
method:getLabel(protected; std::string;) { return label;

method:fossilCollect(protected; void;)
{/ method:fossilCollect(protected; void;)

char ch;

if (getTime) >= 0.0) // If the timestamp is not negative

if (waiting for orders.isActive)) II Unit waiting for orders?

std::cout << getTime() << ":" << std::endl;
std::cout << getLabel() << " issuing orders:" << std::endl;
for (int i=0; i<subs.size); ++i)
std::cout << "\t" << sublabels[i] << "...." << subtimes[i]

<< std::endl;
// if (waiting for orders.isActiveo)

else if (working.isActive() && units done==subs.size())

std::cout << getTime) << ":" << std::endl;
std::cout << getLabel() << " reports objective achieved."

<< std::endl << std::endl;

// else if (working.isActiveo)
// if (getTime)) >= 0.0)

} I/ method:fossilCollect(protected; void;)

method:getScale(public; std::vector<double>;)
{ return make vector(2, 0.20, 1.0); 1

method:getTranslation(public; std::vector<double>;)
f return makevector(2, 150.0*((double) (instance-l.5)), -1.5); }

mode: start

409

1mode:Default
node: startSimulation StartSimulation: in]

[Settolor:sc=> (unit-node;)]
sc.set~l.0, 0.0, 0.0, 1.0);

node:setParent[setparent:in] IIUpon reciept of set parent
[set parent:out[]=>(subs[@] ;) , // Send subordinates
AddShape2D:as=>(unit node;), //Add in.rect to node
AddNode2D:an=>(in.parent -node;), IIAdd to parent
SetAffine2D:sat=>(unit node;), IIset transform
SetLabel:sl=>)unit-node;)] 1 Set the unit's label

// node:setParent[setparent:in] [set parent:out[]]
parent=in.getSource)); // Set the parent handle
instance = in.instance; /1Set subordinate instance number
setLabel~in.label); // Set this instance label
sl.set~in.label); IILabel value to set for the unit node

as.add~in.rect); /1Add shape as a subordinate to the node
an.add~unit-node); IIAdd unit-node as subordinate to parent

sat.setScale~getScale))); 1/Set the node scaling factor
sat.setTranslation~getTranslation))); //Set node translation

if (getType)) != SPT soldier) /1If not a soldier

for (lot i=0; i<subs.size)); ++i) IILoop over output messages

out.push -back~me); /1Create a new output message
out.back)).instance = i; /1Set the instance number
out.back)).rect = in.rect; IIPass the info along
out.back)).parent_node = unit_node; IIPass this along, too
out.back)).label = label+sub_labels[i]; // Set label number

Ifor (mnt i=0; i<subs.size)); ++i)
// if (getType))! SPT-soldier)

start.setActive~false); /1Deactivate the start mode
waiting for orders.setActive~true); IIActvt waiting for_orders
an.setTX~getType)) != SPT brigade); // To avoid a loop

IInode:setParent[set__parent:in] [set parent:out[] I
Imode:Default

mode :waiting for_orders
1mode:waiting for-orders

node:startSimulation[StartSimulation:in] []
{waiting for orders. setActive)false);I

node: receive (order: ord]
[order:out[]=>)subs[@];):)sub times[@]),
SetColor: sc=> (unit-node;)]

{ // node:receive[order:ord] [order:out[4]]
sc.set~l.0, 1.0, 0.0); IISet the color to yellow

if (getType))! SPT-soldier)

for (mnt i=0; i<subs.size)); ++i) IILoop over subordinates

sub -times.push backgetTime)+random.nextDouble~ord.data));
out.push-back~me); // Create a new order
out.back)).data=ord.data~random.nextDouble~ord.data) /2.0;

/for (mnt i0O; i<subs.size)); ±+i)
// if (getType)) != SPT soldier)

waiting for orders.setActive~false); /1No longer waiting
working.setActive~true); IIWe are now working

Inode:receive[order:ord] [order:out[4]]
Imode:waiting for orders

410

C.5. Brigade2

C.5.1. baftalion.proc
{import process {unit, company) I

processf:battsion(unit)
{// process:battalionunit)

company:subordinates[4]; // Subordinate objects

method:init(protected; void;)
i method:init(protected; void;)

unit::init); // Call parent class version
subs = subordinates; II Copy the subordinate handles
sublabels.push back(" Alpha Company");
sublabels.push back(" Bravo Company");
sublabels.push back(" Charlie Company");
sublabels.push back(" Delta Company");

}/ method:init(protected; void;)

C.5.2. brigade.proc

{import process {unit, battalion} I
{import message {order, set parent, StartSimulation}
{import std {<string>, <iostream>} }

process:brigade(unit)

battalion:subordinates[4];

method:init(protected; void;)
{I method:init(protected; void;)

unit::init); / Call parent class version
sub count = 4; // We have four subordinates
subs = subordinates; // Copy the subordinate handles
sublabels.pushback(" 1st Battalion");
sub labels.push back(" 2nd Battalion");
sublabels.pushback(" 3rd Battalion");
sublabels.pushback(" 4th Battalion");

// method:init(protected; void;)

mode:start
{ // mode:start
node:start[StartSimulation:strt] // Initial message from engine

[order:out=>(me;):(O.O), // Actually start sim at time 0
set parent:sp=>(me;)] II Set parent for subordinates

{ // node:start[StartSimulation:strt] [...]
sp.instance = 0; // Set the instance number
sp.label = "Brigade"; // Set this instance label
out.data = 5.0+random.nextDouble(5.0); // Generate data value

}/ node:start[StartSimulation:strt] [...]
} // mode:start

C.5.3. company.proc
{import process {unit, platoon}
{import std {<string>, <iostream>} I

process:company(unit)
I/ process:company(unit)

platoon:subordinates[4];

411

method:init(protected; void;)
{/ method:init(protected; void;)

unit::init(); // Call parent class version
subs = subordinates; // Copy the subordinate handles
sublabels.push back(" lst Platoon"); I/ Subordinate label values
sublabels.push back(" 2nd Platoon");
sub labels.push back(" 3rd Platoon");
sublabels.push back(" 4th Platoon");

}I method:init(protected; void;)
I/ process:company(unit)

C.5.4. order.msg

message:order

double:data(0.0);

C.5.5. platoon.proc
{import process {unit, squad) I
{import std {<string>, <vector>, <iostream>}

p
process:platoon(unit)
{I/ process:platoon(unit)

squad:subordinates[4];

method:init(protected; void;)
{/ method:init(protected; void;)

unit::inito; // Call parent class version
subs = subordinates; // Copy the subordinate handles
sub labels.push back(" Squad 1"); // Subordinate label values
sublabels.push back(" Squad 2");
sub labels.push back(" Squad 3");
sublabels.push back(" Squad 4");

I/ method:init(protected; void;)
// process:platoon(unit)

C.5.6. report.msg

message:report

long:instance(O);

C.5.7. set parent.msg
{import std {<string>) I

message:setparent
{ // message:set parent

int:instance; // Subordinate instance number of the destination
std::string:label; // Label of the destination

}II message:setparent

C.5.8. soldier.proc
(import process {unit} I
(import message {order, report) I
{import std {<string>, <iostream>} }

412

process:soldier(unit)

method:init(protected; void;)
method:init(protected; void;)

unit::inito; // Call parent class version
sub count = 1; // Soldier has no subordinates
subs.push_back(me); // Copy the subordinate handles

}/ method:init(protected; void;)

method:fossilCollect(protected; void;)
// method:statusReport(protected; void; sim:report&:in;)

if (getTime) >= 0.0) // If the timestamp is not negative

if (waiting for orders.isActive() // If unit waiting for orders

std::cout << getTime) << ":" << std::endl;
std::cout << getLabel() << " following orders:

<< sub times[0] << std::endl << std::endl;
// if (waiting fororders.isActive())

else // If it's anything else
unit::fossilCollect); // Let parent class take care of it

// if (getTime) >= 0.0)
}/ method:statusReport(protected; void; sim:report&:in;)

mode:waiting for orders
// mode:waitingfororders

node:receive[order:ord]
[report:out=>(me;):(sub times[0])]

// node:receive[order:ord] [order:out[4]]
subtimes.push back(getTime()+random.nextDouble(ord.data));
subs done.push back(false); // The subordinates are not done

II node:receive[order:ord] [order:out[4]]
}/ mode:waiting_fororders

}/ process:soldier(unit)

C.5.9. squad.proc
{import process {unit, soldier I
{import std {<string>, <iostream>} I

process:squad(unit)
{I process:squad(unit)

soldier:subordinates[10];

method:init(protected; void;)
{I method:init(protected; void;)

unit::inito; // Call parent class version
subs = subordinates; // Copy the subordinates
sub_labels.push back(" Leader"); II Subordinate label values
sublabels.pushback(" Radioman");
sub_labels.push back(" Heavy gunner 1");
sub_labels.push back(" Heavy gunner 2");
sub_labels.push back(" Corpsman");
sublabels.pushback(" Demolitionist");
sub_labels.push back(" Infantryman 1");
sublabels.pushback(" Infantryman 2");
sublabels.push back(" Infantryman 3");
sublabels.push back(" Infantryman 4");

}/ method:init(protected; void;)
// process:squad(unit)

C.5.10. unit.proc
{import message {report, order, setparent, StartSimulation) I
{import std {<vector>, <iostream>, <string>) I
{import {<stdlib.b>, <time.h>) }

413

process:unit

int:instance; // Subordinate instance of this unit
int:sub count; // # of subordniates
bool:unit done(false); // Is the entire unit done with it's task?
bool:subs-done[]; II Subordinates reporting that they're done
process:parent; // Parent unit
process:subs[]; // Handles to subordinate units
std::string:label(..); // Label for this unit
std::string:sub labels[]; // Labels for subordinate units
double:subtimes[]; // Timestamp for subordinate units

method:setLabel(protected; void; std::string:l;) { label = 1;
method:getLabel(protected; std::string;) I return label;

method:fossilCollect(protected; void;)
// method:fossilCollect(protected; void;)

if (getTime) >= 0.0) I/ If the timestamp is not negative

if (waitingfor_orders.isActiveo) // If unit waiting for orders

std::cout << getTime() << ":" << std::endl;
std::cout << getLabel() << " issuing orders:" << std::endl;
for (int i=0; i<sub count; ++i)

std::cout << "\t" << sublabels[i] <<" << subtimes[i]

<< std::endl;
// if (waiting fororders.isActive()

else if (working.isActive() && unitdone) // If unit is done

std::cout << getTimeo) << ":" << std::endl;
std::cout << getLabel() << " reports objective achieved."

<< std::endl << std::endl;
}/ else if (working.isActive())

// if (getTime() >= 0.0)
// method:fossilCollect(protected; void;)

mode:start
// mode:Default

node:setParent[setparent:in]
[setparent:out[1=>(subs[@];)]

// node:setParent[set parent:in] [set parent:out[]
parent=in.getSource(); // Set the parent handle
instance = in.instance; // Set the subordinate instance number
setLabel(in.label); // Set this instance label

if (getType() != SPTsoldier) // If not a soldier

for (int i=0; i<sub count; ++i) // Loop over output messages

out.push back(me); // Create a new output message
out.back().instance = i; // Set the instance number
out.back().label = label+sub labels[i]; // Set label number

I/ for (int i=0; i<sub count; ++i)
// if (getType() != SPTsoldier)

start.setActive(false); // Deactivate the start mode
waiting fororders.setActive(true); // Actvt waitingfor_orders

I/ node:setParent[setparent:in] [set parent:out[]]
I/ mode:Default

mode:waitingfororders
// mode:waiting_for_orders

node:startSimulation[StartSimulation:in] []
I waiting for orders.setActive(false); I

node:receive[order:ord]
[order:out[]=>(subs[@];):(subtimes[@])]

{ // node:receive[order:ord] [order:out[4]]
if (getType() != SPT soldier)

414

for (int i=0; i<sub-count; ++i) IILoop over the subordinates

sub -times.push-back(getTimeo+random.nextDouble(ord.data));
subs -done.pushback(false); IISubordinates are not done
out.push back(me); // Create a new order
out.back().data=ord.data+random.nextDouble(ord.data) /2.0;

Ifor (int 1=0; i<sub count; ++i)
Ifor (mnt 1=0; i<sub count; ++i)

waiting for orders.setActive(false); IINot waiting for orders
working.setActive (true); // We are now working

} II node:receive[order:ord] [order:out[4]]
/mode:waiting_for_orders

mode: working
/mode:working

node:startSimulation[StartSimulation:in []
{working.setActive(false);)

node:status[report:in] [report:out=> (parent;)]
// node:status[report:in] [report:out]

unit done = true; 1/Initialize the unit_done flag

out.instance = instance; // Specify the instance
subs-done[in.instance] = true; /1This subordinate is done

for (mnt 1=0; i<subs -done.sizeo; ++i) /1Loop over subordinates
unit-done = unit-done && subs_done[i]; 1/Accumulate the value

out.setTX(unit dlone && parent!=me); IIReport to the parent?
Inode:status[report:in] [report:out]

/mode:working
Iprocess:unit

C. 6. Hierarchy

C.6.1. generic.mg

message: generic

ulong:index(0);
method:set(public; void; ulong:i;) f index i; I
method:get(public; ulong;) { return index;

C.6.2. hierarchy.proc
{import process {View2D, Polygon2D, Node2D, Vertex2D}
{import message {SetVertex2D, AddNode2D, AddShape2D, StartSimulation,

AddVertex2D, SetScale2D, SetTranslation2D, SetColor,
SetLabel, SetMode, generic, SetRefresh, SetSize}

{import {<GL/glut.h>}

process: hierarchy
{ II process:hierarchy

View2D :view;
Node2D:nodes [511];
Polygon2D: rect;
Vertex2D:vert[4];

bool:completed[];

method:init~public; void;) {completed.resize(nodes.size(),false);

mode: Default

415

// mode:Default
node: start [StartSimulation: in]

[SetVertex2D:out sv[4)=>(vert[@];),
AddNode2D:out an[]=>((@==0 ? view :nodes[@-1i);)
AddShape2D:out as=>(nodes;),
SetScale2D:out ss=>(nodes;),
SetTranslation2D:out-st[2],
AddVertex2D:out av=>(rect;),
SetMode:out_sm=>(rect;),
Setpefresh:out sr=>(view;),
SetSize: Out size=> (view;),
generic:out=>(me;) :(0.0)]

out sv[0].set(-100.0, -0.5);
out sv[l].set(100.0, -0.5);
out sv[2].set(100.0, 0.5);
out-sv[3].set(-100.0, 0.5);

out an.push -back (me);
out-an.back)).add(nodes[0]);

for (mnt 1=0; (i+l)*2<nodes.sizeo; ++i)

out an.push -back (me);
out an.back().add(nodes[i*2+l));
out-an.back().add(nodes[i*2+2])

out-as.add(rect);

out-ss.set(0.5, 1.0);

out st[0).set(-150, -1.5); out st[l].set(150, -1.5);

for (int 1=1; i<nodes.sizeo; ++ii)
out-st[i%2) .addDest(nodes[i])

out av.add(vert[0)); out av.add(vert[1]);

out-av.add(vert[2)); out-av.add(vert[3]);

out-sr.set(0.5);

out-size.set(1000, 600);

out-sm.set(GLQUADS);

node: run [generic: in)
[generic:out=>(me;):(getTimeo±1.0),
SetColor:out_sc=>(nodes[in.get());)I

II node:run[generic:in) [generic:out=>(mej)I

ulong index = in.get();
ulong left = index*2+1;
ulong right = index*2+2;
ulong parent = (index-1)/2;

if (right > nodes.size)) 11
(completed~left] && completed~right])

std::cout << "Parent in.get() << in.get)) << std::endl;

completed[index] = true;

out.set (parent);
out. setTX (index! =0);

out-sc.set(0.0, 1.0, 0.0, 1.0);

else if (!completed~left])

416

std::cout << " left in.get() <<" in.get(<< std::endl;

out-set (left);
out-sc-set(0.0, 0.0, 1.0, 1.0);

else if (!completed[right])

std::cout <<« right in.get) <<« in.get) << std::endl;

out. set (right);
out_ sc.set(0.0, 1.0, 1.0, 1.0);

/node:run[generic:in] [generic:out=>(me;)]
// mode:Default

/process:hierarchy

C. 7. Ping

C.7.1. Generic.mg
Imessage:Generic;

C.7.2. Ping.proc
(import std(J<iostream>j

{import message {Generic, StartSimulation)
(import process {Pong}

prcs:fn
II process:Frn

int:count(-l(; IICount of the number of messages received
Pong :pong; //something to send a message to

method:init(puhlic; void;) f std::cout.precision(16);I

method: fossiltollect (public; void;)
// method: fossilCollect (public; void;)

if (getTime))> 0)
std::cout << "Ping (" << count <<" at time "1 << getTime))

<< std::endl;
Imethod: fossiltollect (public; void;)

mode: start
Imode:start

node:start (StartSimuletion:strt]
[Generic:out=>(me;) :(0.0)]

// node:start[StartSimulation:nm] [Generic:out=>(pong;)]
start.setActive(false); // Deactivate the start mode

Inode:start[StartSimulation:nm] [Generic:out=>(pong;) I
/mode:start

mode: run
{ II mode:run

node:ponger(Generic:in] (Generic:out=>(pong; (]
Iout.setTX(++count < 20)

II mode:run
1process:Ping

C.7.3. Pong.proc
{import message (Generic)
(import std {Kiostream>)

process: Pong

417

// process:Pong

int:count(-l); IIHow many times have we received a message

method: fossilCollect (public; void;)
// method: fossilCollect (public; void;)

if (getTime() >= 0)
std::cout << "Pong (" << count <<" at time " << getTime()

<< std::endl;
/method: fossilCollect (public; void;)

mode: Default
/mode:Default

node:pinger)Generic:in] [Generic:out=>(in.getSource((;)]
Iout.setTX(++count<2 0);

1mode:Default
Iprocess:Pong

C. 8. Relayl

C.8.1. generic.mg
I message:generic;)

C.8.2. reflector.proc
(import message (generic)

process: reflector
Iprocess:reflector

int:count (-1); IICount of the number of messages received

method:init(public; void;) (std: :cout.precision(15);

method: fossilCollect (public; void;)
// method:fossilCollect (public; void;)

if (count %10000 == 0) // Every 10000 messages
std::cout << count << " on <" << me.getNode() << 1, "

<< me.getlndex) << "> at time " << getTime))
<< std::endl; // Display the message to std::cout

1method: fossilCollect (public; void;)

mode: Default
1mode:Default

node:reflect[generic:in] UI pon reciept of a generic input msg
[generic:out=>(in.getSourceO;)) / Reflect one back

count++;
/mode:Default

/process:reflector

C.8.3. relay.proc
(import message (generic, StartSimulation)
(import process {reflector}

process :relay(reflector(

reflector:r:l; IISomething to send a message to

mode: Default
1mode:Default

node:start [StartSimulation: strt]
[generic:out=>(r;(:(D.0)) j(

} II mode:Default

418

C. 9. Relay2

C.9.1. generic.mg
Imessage:generic;I

C.9.2. reflectorproc
{import message {generic, set partner)

process: reflector
II process: reflector

int:count(-1); //Count of the number of messages received
double: ti; IITimestamp of output message 1
double: t2; IITimestamp of output message 2
process :partner; //Remote partner

method: fossilCollect (public; void;)
IImethod: fossilCollect (public; void;)

if (count >= 0) //Is this valid to do at this point?

std::cout << count << " on 1 << me << " at time "<< getTime()
<< std::endl;

// if (count >= 0)
IImethod: fossilCollect (public; void;)

mode :Default
/mode:Default

node:setPartner[setpartner:in] [] { partner = in.getSourceo;

node:reflect[generic:in] // upon reciept of a generic input msg
[generic:outl=>(partner;) :(tl), // Reflect one back
generic:out2=>(me;) : t2)] 1/Send something back here

{ // node:reflect[genecic] [generic, logmag]
tl = getTime()+random.nextDouble(1O.0(; 1/Get output timestamp
t2 = getTimeVo±random.nextDouble(l0.0(; IIGet output timestamp
count++; /1Log the reflection

Inode:reflect[generic] [generic, logmag]
Imode:Default

Iprocess: reflector

C.9.3. relay.proc
(import message {generic, setpartner, StartSimulation)
(import process {reflector}

process: relay (reflector)

reflector:r:l; //Something to send a message to

mode: Default
/mode:Default

node:start [StartSimulation:strt]
[generic:out=>(r;): (0.0),
set_partner:sp=>(r;(:(-0.9)]

{partner=r;)
) II mode:Default

C.9.4. SetPartnermsg
{message:setpartner;)

419

C. 10. Relay3

C.10.1. child.proc
{import message (generic, setup) I

process: child
Iprocess:child

long:count(-l); IICount of the number of messages received
ulong :cc; IINumber of children
ulong :ec; IINumber of engines
process :dest; IIDestination process
double: ts; 1/outgoing message timestamp

method:fossilCollect (public; void;)
// method: fossilCollect (public; void;)

if (count %200 == 0)
std::cout << count <<c1 on <<« me << " at time " << getTime))

<< std::endl;
// ethod: fossilCollect (public; void;)

mode: start
/mode:start

node:relay[setup:in] []
Inode:relay[setup:in] []

cc = in.getChildCount((; IINumber of children
ec = in.getEngineCount((; IINumber of engines
start.setActive(false); 1/Turn off the start mode

/I node:relay[setup:in] []
II mode:start

mode: run
Imode:run

node: relay [generic: in]
[generic:out=> (dest;) : ts) I

{ // node:relay[generic:in] [generic:out]
ulong di = random.nextlnteger~cc); // Destination index
dest = process~dit(ec-l)+l, di/ec); IISet destination processid
ts = getTime()+random.nextDouble~l.0); // Timestamp
count++; // Log the reflection

Inode:relay[generic:in] [generic:out]
// mode:run

/process:child

C.10.2. generic.mg
I message:generic; I

C.10.3. relay.proc
{import message {StartSimulation, generic, setup)
{import process {child)}

process: relay

child:children[1000] :@tlOO+l;

mode: Default
Imode:Default

node: start [StartSimulation: strt]
[setup: s=> (children;)
generic:out=>(children;) :(0.0)]

// node:start[StartSimulation] [setup, generic]
s.set(children.size)), EngineStand: :stand.engineCountoj-l);

1node:start[StartSimulation] [setup, generic]
Imode:Default

420

C.10.4. setup.mg

message: setup

ulong: childCount;
ulong: engineCount;
method:set(public; void; ulong:c; ulong:e;)

{childCount=c; engineCount=e;)
method:getChildCount(public; ulong;) {return childeount;I
method:getsngineCount(public; ulong;) {return engineCount;I

C. 11. Relay4

C.11.1. child.proc
{import message {generic, setup, subscribe, unsubscribe}

prcs:Ihl
II processcchil

long:count(-l); /1Count of the number of messages received
ulong: ct; 1/Number of children
long:di [3]; 1/Destination index
double:ts[3]; IIoutgoing message timestamp
process:subscriptions[]; /1Subscription process handles

method: fossilCollect (public; void;)
II method:fossilCollect(public; void;)

if (count%l00 == 0) // For the run phase
std: :cout << count <<« on "«< me <<« at time « < getTime)

<< std::endl;
I/ method: fossilCollect (public; void;)

mode: start
I/ mode:start

node: relay [setup: in]
[subscribe:sub=>(subscriptions~difl]];) :(ts[l])]

f // node:relay[setup:in) [Subscribe:sub]
subscriptions = in.get)); // Get the subscription handles
ct = ((ulong) subscriptions.size()); // Number of subscriptions
di[l]=random.nextlnteger(ct); /1Determine subscription to join
ts[l) = -0.9; //Timestamp for the subscription event
start.setActive~false); // Turn off the start mode

Inode:relay[setup:in] [Subscribe:sub]
/mode:start

mode: run
I/ mode:run

node:relay[generic:in] IIGeneric inbound message
[generic:out=>(subscriptions[di[0]];):(tsEO)),
subscribe:sub=>(subscriptions[di[l]];) :(ts[l])
unsubscribe:unsub=>(subscriptions [di [2]];):)ts[2])
I1 node:relay[generic:in] [

for (long i=0; i<3; ++i) //Loop over the messages

di[i] = random.nextlnteger(ct); IIGet the destination
ts[i]=getTime()+random.nextDouble(l.0); // Get timestamp

//for (i=0; i<3; ++i)
count++; 1/Log the reflection

Inode:relay[generic:in][[
// mode:run

1process:child

421

C.1 1.2. generic.mg
Imessage generic;I

C.1 1.3. relay.proc
{import message {StartSimulation, generic, setuplI
{import process {child, subscription)

prcs:fea
1/ processrrela

subscription:sub[2]; IISubscription instances for the program
child:children[4] :@; /1Child processes

mode: Default
I/ mode:Default

node: start [StartSimulation: strt]
[setup:s=> (children;),
generic:out=>(sub;): (0.0)]

/node:start[StartSimulation] [setup, generic]
s.set(sub); // Set the subscription

/node:start[StartSimulation] [setup, generic]
/mode:Default

Iprocess:relay

C.11.4. setup.msg
{impoct std {<vector>}

mesg:Ieu
/1 messagessetu

process:sub[] ; IISubscription reference
method:set~public; void; process:s[];) I sub = s
method:get(public; std::vector<process>;) I return sub;I

Imessage:setup

C.1 1.5. subscribe.msg
{message:subscribe;j

C.1 1.6. subscription. proc
{import message (generic, subscribe, unsubacribe)
{import std {<set>}

prcs:sbcito
II processusubscriptio

std: :set<process>:subscribers; //All of the subscription

mode: Default
II mode:Default

node: subscribe [subscribe: in] []
fsubscribers.insert(in.getSource() ;

node:unsubscribe [unsubscribe :in] []
{subscribers.erase(in.getSource); I;

node:forward[generic:in] [generic:out[]] I Forward generic mag
// node:forward[generic:in] [generic:out[]]

out.push -backlin); // Copy the input message
out.back().clearDesto; IIClear the destination list
std::set<process>::iterator i; // subscribers iterator
for (i=subscribers.begin(); i!=subscribers.end(); ++i)
out.back().addDest(*i); // Change the destination list

Inode:forward[generic:in] [generic:out[]]

422

Imode:Default
IIprocess: subscription

C.11.7. unsubscribe.mg
{message:unsubscribe;l

C. 12. Relay5

C.12.1. base.proc
{lmport message {generic}
{import std {<string>}

process :base
/process:base

long:count (-1); // Counter
std::string:label; IILabel for this base instance

metbod:init(public; void;) I std::cout.precision(l5);I

mnetbod: fossilCollect (public; void;)
// metbod: fossilCollect (public; void;)

if (count%lOCO == 0)
std::cout << label << << " count << @) " << getTime))

<< std::endl;
IImetbod: fossilCollect (public; void;)

mode: Default
Imode:Default

node:routine[generic:in) [) I ++count; I IIncrement counter
Imode:Default
Iprocess:base

C.12.2. generic.mg
I message:generic;

C.12.3. relay.proc
{import message {generic}
{import process {basa, sink}

process: relay (base)

sink:s:me.getNode()+l; /1Sink for the message stream

metbod:init~public; void;) f base::init(); label "relay"; I

mode: Default
Imode:Default

node:run[generic:in] (generic:out=>(s;)] 11
/mode:Default

C.12.4. sink.proc
(import process {base}

II processisinkbbase

metbod:init(public; void;) f base::init((; label ="sink";)
/process:sink(base(

423

C.12.5. source.proc
(import message {StartSimulation, generic)
(import process {relay, base)

process: source (base)
I1 process:source(base)

reiay:r:me.getNodeo(+1; // Relay process

method:init(public; void;) I base::inito; label ="source";I

mode: Default
Imode:Default

node:start[StartSimulation:s] [generic:out=>(me; r;) :(0.0)] f}
node:run[generic:in] [generic:out=>(me; r;)] 1)

// mode:Default
Iprocess:source(base)

C. 13. Relay6

C.13.1. base.proc
{import message {generic)
(import std (<string>)

prcsIbs
1/ processbbas

long:count)-l); // Counter
std: :string:label; 1/Label for this base instance

metbod: fossilCollect (public; void;)
Imetbod:fossilCollect(public; void;)

if (getTime)) >= 0)

ulong p =std::cout.precision));
std: :cout.precision)12);
std::cout << label << ": (" << count << ") @ " << getTime))

<< std::endl;
std: :cout.precision~p);

1metbod:fossilCollect (public; void;)

method:round(public; double; double:t;)
Ireturn floor~t*10.0+0.5)/10.0;I

mode: Default
/mode:Default

node:routine[generic:in] [] f ++count;) 1 Increment counter
/mode:Default
Iprocess:base

C.13.2. generic.mg
fmes sage: generic;I

C.13.3. relay.proc
(import message {generic, StartSimulation)
(import process (base, sink)

process: relay (base)

424

sink:s :1; IISink for the message stream
ulonig: cC(0); // counter

method:init(public; void;) I base::inito; label relay"; I

mode: Default
Imode:Default

node:start[StartSimulation:in] [generic:out=>(me;s;) :(0.0)]

node: run [generic: in]
[generic:out=>(me;):(round(getTimeoj+0.1))]

// node:run[generic:in] [generic:out=>(me;)]
if (++ct%10= 0) out.addDest(s); // Do we send it to a, too

II node:run[generic:in] [generic:out=> (me;)]
Imode:Default

C.13.4. sink.proc
{import message {generic} I
{import proress {base} I
{import {<math.h>}

process: sink (base)
II process:sink(base)

double: lt (-1. 0);
method:init(public; void;) I base::initVo; label=" sink";I

mode: Default
Imode:Default

node:run[generic:in] [generic:out=>(me;) : round(getTimeo+l.0))]
Iout.setTX(fabs(getTime((-lt)>0.l); lt=getTime();I

I // mode:Default
1process:sink(base)

C. 14. Ringi

C.14.1. Generic.mg
{import message {ReportValue}
{message:Generic (ReportValue);

C.14.2. Reportlndex.mg
{import message {ReportValue}
fmessage :ReportIndex (ReportValue);

C.14.3. ReportSize.msg
(import message {ReportValuej
{message:ReportSize(ReportValue);

C.14.4. ReportValue.msg

mnessage: ReportValue
I1 message: ReportValue

ulong:value(((ulong) -1) ; ISize of the subscription
method:set(public; void; ulong:v;(f value =v; //I Set the value
method:get~public; ulong;) I return value; I /Return the value

I1 message: ReportValue

425

C.14.5. Ring.proc
{import process {RingMember, Subscription) I
{import message {Generic, StartSimulation, Setup, ReportSize I

process:Ring

f// process:Ring
RingMember:ring[10]; // Ring of elements
Subscription:sub; // Subscription list

mode:Default
{/ mode:Default

node:start[StartSimulation:strt] // Start the simulation
[Setup:s=>(ring;), // Broadcast a setup message
ReportSize:r=>(sub;):(-0.5), // Report size to members
Generic:out=>(ring[0];):(0.0)] // Start the ring

{/ node:start[StartSimulation:strt] [
s.set(sub); // Set the subscription parameter

} // node:start[StartSimulation:strt] [
}/ mode:Default
}/ process:Ring

C.14.6. RingMember.proc
{import message {Generic, Setup, ReportSize, ReportIndex, Subscribe)

process:RingMember
// process:RingMember

process:sub; // Handle to the subscription process
long:count(-l); // A simple counter
long:next(0); // Index of next instance
long:index(0); // Index of this instance

method:init(protected; void;) { std::cout.precision(16); I

method:fossilCollect(public; void;)
// method:fossilCollect(public; void;)

if (getTime) >= 0)

std::cout << "RingMember[" << index<< "]: (" << count
<< ") at time " << getTime) << std::endl;

}/ method:fossilCollect(public; void;)

mode:Default
{/ mode:Default

node:setup[Setup:in] [Subscribe:out=>(sub;)] { sub=in.get(;
node:setIndex[ReportIndex:in] [] { index=in.get();
node:setNext[ReportSize:in] [] { next = (index+l) % in.get(; I

node:run[Generic:in] [Generic:out => (sub;)]
// node:run[Generic:in] [Generic:out]

out.set(next); // Set the index of the eventual destination
out.setTX(count++<10); // Do we continue transmitting?

}/ node:run[Generic:in] [Generic:out]
// mode:Default

I/ process:RingMember

C.14.7. Setup.msg

message:Setup
message:Setup

process:sub; // Subscription reference to use
method:set(public; void; process:p;) { sub=p; I // Set the sub
method:get(public; process;) { return sub; I // Return the sub

}I message:Setup

426

C.14.8. Subscribe.msg
{message: Subscribe;j

C.14.9. Subscription. proc
{import message {Subscribe, ReportSize, ReportIndex, Generic)

prcs:Sbcito
II process:Subscriptio

process: subscribers []; IList of subscribers

mode: Default
/mode:Default

node:subscribe[Subscribe:in] [Reportlndex:out=>(in.getSource)]
// node:subscribe[Subscribe:in] [Reportlndex:out]

out.set(subscribers.size()); /1Index value to report back
subscribers.push-back(in.getSource()); // Add the subscriber

} I// node:subscribe[Subscribe:in] [Reportlndex:out]

node:reportSizelReportSize:in] [ReportSize:out=>(subscribers;)]
{ I// node:reportSizetReportSize:in] [ReportSize:out]

out.set(subscribers.sizeW); // Set size of output message
Inode:reportSize[ReportSize:in] [RepoctSize:out]

node:forward[Generic:in] [Generic:out]
// node:forward[Generic:in] tGeneric:outI

if (in.get() < subscribers.size()) // If a valid value
out.addDest(subscribers[in.get()]); IIForward only to dest

else // If the value is not valid
out.addDest(subscribers); 1/Broadcast to all subscribers

out.set(in.getofl; // Report the proper index
Inode:forward[Generic:in] [Generic:out]

// mode:Default
1process: Subscription

C. 15. Ring2

C.15.1. Generic.mnsg
{import message {ReportValue}
{message:Generic(RepoctValue);l

C.1 5.2. Reportlndex.mg
{import message {ReportValue}
Imessage :Reportlndex (ReportValue);

C.15.3. ReportSize.msg
fimport message {ReportValuej
{message:ReportSize (ReportValue);

C.15.4. ReportValue.msg
mesgfReotau

m/ message:Reportaalu

ulong:value(((ulong) -1) ; 1Size of the subscription
method:set(public; void; ulong:v;) {value =v; / / Set the value
method:get(public; ulong;) (return value; I IReturn the value

Imessage: ReportValue

C.15.5. Ring.proc
(import process {RingMember, Subscription) 1

427

{import message {Generic, StartSimulation, Setup, ReportSize]

process :Ring

/process:Ring
Ringmember:ring[10] ; /1Ring of elements
Subscription: sub; 1/Subscription list

mode: Default
Imode:Default

node:start[StartSimnulation:strt] / Start tbe simulation
[Setup:s=>(ring;), 1/Broadcast a setup message
ReportSize:r=>(sub;) :(-0.5), 1/Report sire to members
Generic:out=>(sub;) :(0.0)] // Start tbe ring

I I node:start[StartSimulation:strt][I
s.set~sub); // Set tbe subscription parameter

I/ node:start[StartSimulation:strt][[
/mode:Default
/process:Ring

C.1 5.6. RingMemberproc
{import message (Generic, Setup, ReportSize, ReportIndex, Subscribe]

prcs:Rnfme
// process:Ringeembe

process:sub; /1Handle to the subscription process
long:count)-l) ; // A simple counter
long:next (0); 1/Index of next instance
long:index(0); 1/Index of tbis instance

metbod:init(public; void;) I std::cout.precision(16);I

metbod: fossilCollect (public; void;)
// metbod: fossilCollect (public; void;)

if (getTime)) >= 0)
std::cout << "RingMember[" << index<<1:) << count

<< ") at time "<< getTime)) << std::endl;
Imetbod: fossilCollect (public; void;)

mode: Default
// mode:Default

node:setup[Setup:in] [Subscribe:out=>)sub;)] I sub=in.get));I
node:setlndex[Reportlndex:in] [1 { index=in.get));
node:setNext[ReportSize:in] [] I next =)index+l) %in-get));I

node:run[Generic:in] [Generic:out => (sub;) I
I // node:run[Generic:in] [Generic:out]

out.set~next); //Set tbe index of the eventual destination
out.setTX~count++<l0); // Do we continue transmitting?

Inode:run[Generic:in] EGeneric:out]
// mode:Default

Iprocess:RingMember

C.15.7. Setup.msg
mesg:Ieu

II message:Setu

process: sub; IISubscription reference to use
metbod:set~public; void; process:p;) {sub=p; I // Set the sub
metbod:get~public; process;) { return sub; I IIReturn the sub

II message:Setup

428

C.1 5.8. Subscribe.msg
{message:Subscribe;1

C.15.9. Subscription. proc
{import message {Subscribe, ReportSize, ReportIndex, Generic) I

process: Subscription
/process :Subscription

process: subscribers [1; /1List of subscribers

mode: Default
1mode:Default

node:subscribe[Subscribe:in] [Reportlndex:out=>(in.getSourceo);)]
// node:subscribe[Subscribe:in] [Reportlndex:out]

out.set(subscribers.sizeo); IIIndex value to report beck
subscribers.pushback(in.getSourceofl; // Add the subscriber

// node:subscribe[Subscribe:in] [Reportlndex:out]

node:reportSize[ReportSize:in] [ReportSize:out=>(subscribers;)]
I // node:reportSize[ReportSize:in] [ReportSize:out]

out.set(subscribers.sizeo); // Set size of output message
/I node:repoctSize[ReportSize:in] [ReportSize:out]

node:forward[Generic:in] [Generic:out]
// node:forward[Generic:in] [Generic:out]

if (in.get() < subscribers.sizeo) // If a valid value
out.addDest(subscribers[in.geto]); /1Forward only to dest

else // If the value is not valid
out.addDest(subscribers); //Broadcast to all subscribers

out.set(in.geto); // Report the proper index
1node:forward[Generic:in] [Generic:out]

// mode:Default
Iprocess:Subscription

C. 16. Simple 1

C.16.1. Genericmsg
{message:Generic; I

C.16.2. Simple.proc
{import std {<iostream>}

{import message {Generic, StartSimulation)

process: Simple
f1 process:Simple

int:count(-l) ; /1Hit counter

method:init(public; void;) { std: :cout.precision(15);

method: fossilCollect (public; void;)
/method: fossilCollect (public; void;)

if (getTime)) >= 0) IIIf this is a good time to proceed

std::cout << me <<

if (getTime)) == 0) std::cout << "starting";
else std::cout << count << " @ time " << getTimeo;
std::cout << std::endl;

// if (getTime)) >= 0)
IImethod: fossiltollect (public; void;)

mode: start

429

// mode:start
node:proc[StartSimulation:strt] [Generic:om=>(me;):(0.0)]

// node:proc[StartSimulation:strt] [Generic:om=> (me;)]
start.setActive(false); // Turn the start mode off

Inode:proc[StartSimulation:strt] [Generic:om=> (me;)]
1 /1 mode:start

mode: run
/mode:run

node:proc[Generic:im] [Generic:om=> (me;)]
Inode:proc[Generic:im] [Generic:om=>(me;)]

om.setTX(+fcount < 100); // Do we transmit?
/node:proc[Generic:im] [Generic:om=> (me;)]

// mode:run
/process:Simple

C. 17. Simple2

C.17.1. Generic.mg
{message:Generic; I

C.17.2. Simple.proc
{import message {StartSimulation, Generic)
{impoct std {<iostream>}

prcs:Sml
1/ process:Simpl

long:count(-1) ; IICounter

method:init(public; void;) { std::cout.precision(l6);I

method: fossilCollect (puhlic; void;)
// method: fossilCollect (puhlic; void;)

if (count % 10000 ==0)
std::cout << "Simple (" << count << 1) at time " << getTime))

<< std::endl;
II method: fossilCollect (puhlic; void;)

mode: start
II mode:start

node:proc[StartSimulation:in] [Ceneric:out=> (me;): (0.0)]
Istart.setActive~false);I

II mode:start

mode: run
I1 mode:run

node:proc[Generic:in] [Generic:out=> (me;)]
count++; I I Loop

//mode:run
Iprocess:Simple

C. 18. Simple3

C.18.1. Child.proc
{import message {SetParent, Generic) I

prcsI:hl
// process:Chil

process:parent; //Handle to the parent process
long:count (-1); /1Counter

430

method:init(public; void;) I std::cout.precision(lE); I

method: fossilCollect (public; void;)
// method: fossilCollect (public; void;)

if (run.isACtive)(&& count % 10000==0) // Every 10000 messages
std::cout <<K Child (11 << count << ") at time 11 << getTime()

<< std::endl; // Display the status
/method: fossilCollect (public; void;)

mode: start
1mode:start

node:setParent [SetPerent:in) []
II node:setParent[SetParent:in] []

parent = in.getSource(); 1/Set the parent reference
start.setActive(false); // Turn this mode off

II node: setParent [SetParent: in] []
Imode:start

mode: run
II mode:Default

node:bounce[Generic:in] [Generic:out=> (parent;)] I count++;I
II mode:Default

II process:Child

C.18.2. Generic.mg
(message:Generic;j

C.18.3. SetParent.msg
(message:Set~arent;j

C.18.4. Simple.proc
{import message {StartSimulation, Generic, SetParent)
(import process (Child)
(import std (Kiostream>)

process: Simple
/process:Simple

long:count (-1); // Counter
Child:child; IIChild process

method:init(public; void;) { std: :cout.precision(lE(;I

method: fossilCollect (public; void;)
// method: fossilCollect (public; void;)

if (run.isActive() && count %10000==0) // Every 10000 messages
std::cout << "Simple (" << count << ") at time " << getTime))

<< std::endl; // Display the status
Imethod: fossilCollect (public; void;)

mode: start
I/ mode:Default

node: start [StartSimulation: strt]
[Generic:out=>(child;) :(0.0), SetParent:sp=>(child;)]

I // node:start[StartSimulation:strt] [Generic:out,SetParent:spI
start.setActive(false); // Deactivate the start mode

Inode:start[StartSimulation:strt] [Generic:out,SetParent:sp]
1mode:Default

mode :run
Imode:Default

node:bounce[Generic:in] [Generic:out=>(child;)] I count++;I
// mode:Default
/process:Simple

431

432

Appendix D. References

K. Atkinson, 1989, An Introduction to Numerical Analysis, 2" Edition, New York,
(Atkinson 1989) John Wiley & Sons

H. Bauer, C. Sporrer, 1992, "Distributed Logic Simulation and an Approach to
(Bauer 1992) Asynchronous GVT-Calculation", Proceedings 6"h Workshop on Parallel and

Distributed Simulation, vol 24, pp 205-206,

S. Bellenot, 1990 "Global virtual time algorithms", Proceedings of the(Bellenot 1990) Multiconference on Distributed Simulation, 22 (1), January, pp. 122-127.

The Boeing Company, 2001, online product description of digital design
(Boeing 2001) methodologies for the Boeing 777 family of commercial airliners

http://www.boeing.com/commercial/777familv/cdfacts.html

R. Bryant, 1977, Simulation of Packet Communication Architecture Computer
(Bryant 1977) Systems. MIT-LCS-TR-188, Massachusetts Institute of Technology, Cambridge,

MA

K. Chandy, J. Misra, J., 1979, "Distributed Simulation: A Case Study in Design
(Chandy 1979) and Verification of Distributed Programs", IEEE Transactions on Software

Engineering, Vol. SE-5, No 5, September, pp. 440-452

(Chandy 1981) K. Chandy, J. Misra, J., 1981, "Asynchronous Distributed Simulation via aSequence of Parallel Computations", Communications of the ACM, 24:4, 198-205

A. Concepcion, S. Kelly, 1990, "Computing Global Virtual Time Using the Multi-
(Concepcion 1990) Level Token Passing Algorithm", Advances in Parallel and Distributed Simulation,

vol 23, pp 63-70

T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT-Press,(Cormen 1990) McGraw Hill, Cambridge, MA

(DMSO 2001) Defense Modeling and Simulation Organization, 2001, online statement of mission
and purpose http://www.dmso.mil/index.php?page = 133

(DODI 1996) Department of Defense Instruction (DODI) 5000.61, 29 April 1996, DoD Modelingand Simulation (M&S) Verification, Validation, andAccreditation (VV&A),

L. D'Souza, X. Fan, P. A. Wilsey, 1994, "pGVT: An algorithm for accurate GVT
(D'Souza 1994) estimation", Proceedings of the 8h Workshop on Parallel and Distributed

Simulation, Edinburgh Scotland, ppl02-109

A. Fabbri, 1999, "GVT and Scheduling in Space Time Memory Based
(Fabbri 1999) Techniques" Proceedings 13"h Workshop on Parallel and Distributed Simulation,

Atlanta, GA, pp. 54-61

(Fishwick 1995) P. Fishwick, 1995, Simulation Model Design and Execution; Building Digital
Worlds, Englewood Cliffs, NJ, Prentice-Hall

J. Foley, et al, 1996 Computer Graphics: Principles and Practice in C: 2/e,
(Foley 1996) Reading, MA Addison Wesley Longman

(Fujimoto 1990) R. Fujimoto, 1990 , "Parallel Discrete Event Simulation", Communications of the
ACM, Vol. 33 (10), October

R. Fujimoto, 1993, "Parallel Discrete Event Simulation: Will the Field Survive?"
(Fujimoto 1993) OSRA Journal on Computing, 5(3):213-230

433

R. Fujimoto, M. Hybinette, 1997, "Computing Global Virtual Time in Shared-
(Fujimoto 1997) Memory Multiprocessors", ACM Transactions on Modeling and Computer

Simulation, Vol. 7, No. 4, October, pp 425-446
S1998) W. Gropp, et al, 1998, MPI - The Complete Reference, Volume 2, The MPI

(Gropp 1Extensions, Cambridge, MA, The MIT Press

W. Gropp, E. Lusk, A. Skjellum, 1999, Using MPI: Portable Parallel
(Gropp 1999a) Programming with the Message-Passing Interface, 2"d Edition, Cambridge, MA,

The MIT Press

W. Gropp, E. Lusk, A. Skjellum, 1999, Using MPI-2: Advanced Features of the(Gropp 1 999b) Message-Passing Interface, Cambridge, MA, The MIT Press

R. Hockney, Eastwood James, 1988, Computer Simulation Using Particles,(Hockney 1988) Bristol, Adam Hilger

T. Hungerford, 1974, Algebra, New York, Springer Verlag Graduate Texts in(Hungerford 1974) Mathematics, pp 7-9

E. Isaacson, H. Keller, Herbert. 1966 Analysis of Numerical Methods, New York,(Isaacson 1966) Dover Publications, Inc.

D. Jefferson, H. Sowizral, 1982, Fast Concurrent Simulation Using the Time
(Jefferson 1982) Warp Mechanism, Part I: Local Control, Technical Report N-1906-AF, RAND

Corporation, Santa Monica, CA

D. Jefferson, 1985, "Virtual Time", ACM Transactions on Programming(Jefferson 1985a) Languages and Systems, 7 (3), July 1985, pp. 3-7

D. Jefferson, H. Sowizral, 1985, "Fast concurrent simulation using the Time Warp
(Jefferson 1985b) mechanism", Proceedings of the Conference on Distributed Simulation, volume

15(2), San Diego, CA, January, 63-69

D. Jefferson, et al, 1987, "The Time Warp Operating System." 11' Symposium on(Jefferson 1987) Operating Systems Principles 21, 5, November, 77-93

N. Josuttis, 1999, The C+ + Standard Library; A Tutorial and Reference, Reading,(Josuttis 1999) MA, Addison Wesley Longman

F. Kuhl, R. Weatherly, J. Dahmann, 1999, Creating Computer Simulation
(Kuhl 1999) Systems: An introduction to the High Level Architecture, Upper Saddle River, NJ,

Prentice Hall PTR

Y. Lin, E. Lazowska, 1989, Determining the global virtual time in distributed
(Lin 1989) simulation, Technical Report 90-01-02, Department of Computer Science,

University of Washington, Seattle, WA

(LLNL 1998) Lawrence Livermore National Laboratory, 2001, online JCATS ExecutiveSummary, http://www.llnl.gov/nai/group/JCATSExecSummary.htm

M. Mansuripur, 1997, "The Ronchi Test", Optics & Photonics News, July, pp 42-
(Mansuripur 1997) 46

The MathWorks, 2001, online product Literature for Simulink 4, available at(Math Works 2001) http://www.mathworks.com/products/simulink/

F. Mattem,1993, "Efficient Algorithms for Distributed Snapshots and Global
(Mattern 1993) Virtual Time Approximation", Journal of Parallel and Distributed Computing, vol

18, pp 423-434

434

F. Morrison, 1991, The Art of Modeling Dynamic Systems; Forecasting for Chaos,(Morrison 1991) Randomness, & Determinism, New York, John Wiley & Sons

B. Priess, I. MacIntyre, 1990, YADDES - Yet Another Distributed Discrete Event
(Priess 1990) Simulator: User Manual, Department of Electrical and Computer Engineering,

University of Waterloo, Waterloo, Ontario, Canada

W. Press et al. 1992 Numerical Recipes in C; The Art of Scientific Computing, 2nd(Press 1992) Edition, Cambridge University Press

P. Reiher, D. Jefferson, 1990, "Virtual Time Based Dynamic Load Management
(Reiher 1990a) in the Time Warp Operating System", Transactions if the Society for Computer

Simulation, Vol 7(2), June

P. Reiher, F. Wieland, P. Hontalas, 1990, "Providing Determinism in the Time
(Reiher 1990b) Warp Operating System - Costs, Benefits, and Implications", Proceedings of the

IEEE Workshop on Experimental Distributed Systems, October

(Reiher 1990c) P. Reiher, 1990, "Parallel Simulation Using the Time Warp Operating System",Proceedings of the 1990 Winter Simulation Conference, December

P. Reiher, S. Bellenot, D. Jefferson, 1991, "Temporal Decomposition of
(Reiher 1991a) Simulations Under the Time Warp Operating System", Proceedings of the 1991

Principles of Distributed Simulation Conference

P. Reiher, S. Bellenot, D. Jefferson, 1991 "Debugging the Time Warp Operating
(Reiher 1991b) System and Its Applications", Proceedings of the Symposium in Experiences with

Distributed and Multiprocessor Systems H1, March

P. Reiher, 1992, "Experiences With Optimistic Synchronization for Distributed
(Reiher 1992) Operating Systems", Proceedings of the Third Symposium on Experiences with

Distributed and Multiprocessor Systems, March

P. Rosenbloom, et al, 1994. "Intelligent automated agents for tactical air
(Rosenbloom 1994) simulation: a progress report". Proceedings of the Fourth Conference on Computer

Generated Forces and Behavioral Representation. Orlando, FL.

United States Army Simulation, Training and Instrumentation Command, 1999,
(STRICOM 1999) Advanced Distributed Simulation Technology II: ModSAF 5.0 Functional

Description Document, ADST-H-CDRL-MODSAF5.0-9800327

(Wonnacott 1996) P. Wonnacott, 1996, Run-time Support for Parallel Discrete Event SimulationLanguages, Ph.D. Dissertation, University of Exeter, Faculty of Science

(Wright 1996) R. Wright, M. Sweet, 1996, OpenGL Superbible, Waite Group Press

Z. Xiao, F. Gomes, B. Unger, 1995, "A Fast Asynchronous GVT Algorithm for
(Xiao 1995) Shared Memory Multiprocessor Architectures", Proceedings of The 1995

Workshop on Parallel and Distributed Simulation, IEEE Computer Society

435

